Charged isotropic model with conformal symmetry

被引:0
作者
D. Kileba Matondo
S. D. Maharaj
S. Ray
机构
[1] University of KwaZulu-Natal,Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer Science
来源
Astrophysics and Space Science | 2018年 / 363卷
关键词
General relativity; Conformal symmetry; Compact star;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate the behaviour of a charged isotropic model with conformal symmetry. The relationship between the gravitational potentials arising from the conformal condition is used to generate a new class of exact solutions to the Einstein-Maxwell equations. A specific form of the electric field intensity and the metric potential is required to avoid a singularity at the centre. We can find simple elementary functions for the matter variables and the potentials with realistic profiles. The causality conditions, stability conditions and energy conditions are satisfied. Masses, radii, central densities and surface redshifts are generated, and the values are consistent with the compact stars 4U 1538-52 and PSR J1614-2230.
引用
收藏
相关论文
共 74 条
[1]  
Andreasson H.(2009)undefined J. Phys. Conf. Ser. 189 596-undefined
[2]  
Bhar P.(2017)undefined Eur. Phys. J. C 77 757-undefined
[3]  
Newton Singh K.(2007)undefined Gen. Relativ. Gravit. 39 39-undefined
[4]  
Sarkar N.(1964)undefined Proc. R. Soc. Lond. A 281 1027-undefined
[5]  
Rahaman F.(1959)undefined Phys. Rev. 116 239-undefined
[6]  
Bohmer C.G.(2017)undefined Ann. Phys. 387 328-undefined
[7]  
Harko T.(1983)undefined Phys. Rev. 27 521-undefined
[8]  
Bondi H.(2010)undefined Eur. Phys. J. C 67 2508-undefined
[9]  
Buchdahl H.A.(2013)undefined Int. J. Theor. Phys. 52 738-undefined
[10]  
Deb D.(2002)undefined Phys. Rev. D 65 329-undefined