Effect of aluminum nanoparticle size on phase transitions: a molecular dynamics study

被引:0
作者
I. D. Arellano-Ramírez
E. A. Hincapie Ladino
E. Restrepo-Parra
机构
[1] Universidad Tecnológica de Pereira (UTP),Physics Department
[2] Universidad Nacional de Colombia Sede Manizales,Laboratorio de Física del Plasma
来源
Indian Journal of Physics | 2023年 / 97卷
关键词
Molecular dynamics simulation; Nanoparticles; Melting; Crystallization; Phase transition; Aluminum;
D O I
暂无
中图分类号
学科分类号
摘要
Isothermal molecular dynamics simulations were carried out with the embedded-atom method as a potential to predict the melting and crystallization temperatures of nanometric sized aluminum particles in the range of 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2$$\end{document}–4nm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4 \mathrm{nm}$$\end{document}. Simulated data predicted a decrease in the melting point Tm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T}_{m}$$\end{document} of aluminum nanoparticles with an increase in their inverse radius r-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${r}^{-1}$$\end{document} according to an almost linear law. The data obtained predicted a higher value of melting temperature compared to crystallization by ΔT=272K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta T=272 \mathrm{K}$$\end{document} for a size of 4nm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4\mathrm{ nm}$$\end{document} and, ΔT=193K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta T=193 K$$\end{document} for 2nm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\mathrm{ nm}$$\end{document}. The Tm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T}_{m}$$\end{document} of the nanoparticles augmented with increasing size, from 720K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$720 K$$\end{document} for 2nm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2 \mathrm{nm}$$\end{document} to 827K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$827 \mathrm{K}$$\end{document} for 4nm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4\mathrm{ nm}$$\end{document}. Furthermore, a linear extrapolation of the Tm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T}_{m}$$\end{document} as a function of the inverse of the cubic root of the number of atoms yielded a melting temperature of aluminum of 947±8K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$947 \pm 8 \mathrm{K}$$\end{document}, which is similar to previous estimations. Finally, when the number of atoms increased the number of face-centered cubic (FCC) structural units also increased, and the amorphous structure decreased.
引用
收藏
页码:4247 / 4252
页数:5
相关论文
共 135 条
[1]  
Wachutka G(1994)undefined Sensors Actuators A. Phys. 41 279-undefined
[2]  
Borrelli A(2019)undefined NTM Int. J. Hist. Ethics Nat. Sci. Technol. Med. 27 407-undefined
[3]  
Wellmann J(2016)undefined Chinese Phys. B 25 036102-undefined
[4]  
Zhang JP(2009)undefined Acta Mater. 57 941-undefined
[5]  
Zhang YY(2009)undefined Phys. Lett. 475 264-undefined
[6]  
Wang EP(2010)undefined ISIJ Int. 50 1158-undefined
[7]  
Tang CM(2006)undefined J. Phys. Chem. A 110 1518-undefined
[8]  
Cheng XL(1993)undefined Nanostructured Mater. 2 407-undefined
[9]  
Zhang QH(1977)undefined Izv. Akad. Nauk 41 1004-undefined
[10]  
Asta M(2022)undefined Mater. Chem. Phys. 282 125936-undefined