On the six-dimensional origin of the AGT correspondence

被引:0
|
作者
Junya Yagi
机构
[1] University of Hamburg,Department of Mathematics
关键词
Supersymmetric gauge theory; Conformal and W Symmetry;
D O I
暂无
中图分类号
学科分类号
摘要
We argue that the six-dimensional (2, 0) superconformal theory defined on M × C, with M being a four-manifold and C a Riemann surface, can be twisted in a way that makes it topological on M and holomorphic on C. Assuming the existence of such a twisted theory, we show that its chiral algebra contains a W-algebra when M = R4, possibly in the presence of a codimension-two defect operator supported on R2 × C ⊂ M × C. We expect this structure to survive the Ω-deformation.
引用
收藏
相关论文
共 50 条
  • [21] Hermitian structures on six-dimensional nilmanifolds
    Ugarte, Luis
    TRANSFORMATION GROUPS, 2007, 12 (01) : 175 - 202
  • [22] A six-dimensional approach to microtexture analysis
    Poulsen, HF
    PHILOSOPHICAL MAGAZINE, 2003, 83 (24) : 2761 - 2778
  • [23] New couplings of six-dimensional supergravity
    Nishino, H
    Sezgin, E
    NUCLEAR PHYSICS B, 1997, 505 (1-2) : 497 - 516
  • [24] A family of timeless six-dimensional universes
    Boskoff, Wladimir-Georges
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2025,
  • [25] On Exotic Six-Dimensional Supergravity Theories
    G. Galati
    F. Riccioni
    Physics of Particles and Nuclei Letters, 2020, 17 : 650 - 653
  • [26] Gravitino in six-dimensional warped supergravity
    Lee, Hyun Min
    Papazoglou, Antonios
    NUCLEAR PHYSICS B, 2008, 792 (1-2) : 166 - 186
  • [27] Isometry groups of six-dimensional nilmanifolds
    Kornélia Ficzere
    Ágota Figula
    Aequationes mathematicae, 2023, 97 : 725 - 752
  • [28] Six-dimensional nilpotent Lie algebras
    Cicalo, Serena
    de Graaf, Willem A.
    Schneider, Csaba
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (01) : 163 - 189
  • [29] Six-dimensional Lie–Einstein metrics
    Rishi Raj Subedi
    Gerard Thompson
    Journal of Geometry, 2021, 112
  • [30] Structure of six-dimensional microstate geometries
    de lange, Paul
    Mayerson, Daniel R.
    Vercnocke, Bert
    JOURNAL OF HIGH ENERGY PHYSICS, 2015, (09):