Error analysis of a hybrid method for computing Lyapunov exponents

被引:0
作者
Wolf-Jürgen Beyn
Alexander Lust
机构
[1] Universität Bielefeld,Fakultät für Mathematik
[2] Universität Paderborn,Institut für Mathematik
来源
Numerische Mathematik | 2013年 / 123卷
关键词
37M25; 65P40;
D O I
暂无
中图分类号
学科分类号
摘要
In a previous paper (Beyn and Lust in Numer Math 113:357–375, 2009) we suggested a numerical method for computing all Lyapunov exponents of a dynamical system by spatial integration with respect to an ergodic measure. The method extended an earlier approach of Aston and Dellnitz (Comput Methods Appl Mech Eng 170:223–237, 1999) for the largest Lyapunov exponent by integrating the diagonal entries from the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$QR$$\end{document}-decomposition of the Jacobian for an iterated map. In this paper we provide an asymptotic error analysis of the method for the case in which all Lyapunov exponents are simple. We employ Oseledec multiplicative ergodic theorem and impose certain hyperbolicity conditions on the invariant subspaces that belong to neighboring exponents. The resulting error expansion shows that one step of extrapolation is enough to obtain exponential decay of errors.
引用
收藏
页码:189 / 217
页数:28
相关论文
共 30 条
  • [1] Allen L(2002)Numerical exterior algebra and the compound matrix method Numer. Math. 92 197-232
  • [2] Bridges TJ(1999)Computation of the Lyapunov exponent via spatial integration with application to blowout bifurcations Comput. Methods Appl. Mech. Eng. 170 223-237
  • [3] Aston PJ(2003)Computation of the dominant Lyapunov exponent via spatial integration using matrix norms Proc. Roy. Soc. Lond. A 459 2933-2955
  • [4] Dellnitz M(2009)A hybrid method for computing Lyapunov exponents Numer. Math. 113 357-375
  • [5] Aston PJ(2001)Computing Lyapunov exponents on a Stiefel manifold Physica D 156 219-238
  • [6] Dellnitz M(1995)Computation of a few Lyapunov exponents for continuous and discrete dynamical systems Appl. Num. Math. 17 275-291
  • [7] Beyn W-J(2005)On the error in computing Lyapunov exponents by QR methods Numer. Math. 101 619-642
  • [8] Lust A(2007)Lyapunov and Sacker-Sell spectral intervals J. Dyn. Differ. Equ. 19 265-293
  • [9] Bridges TJ(1985)Ergodic theory of chaos and strange attractors Rev. Mod. Phys. 57 617-656
  • [10] Reich S(1995)Estimation of Lyapunov exponents of dynamical systems using a spatial average Phys. Rev. E 51 2844-2855