A sublevel moment-SOS hierarchy for polynomial optimization

被引:0
作者
Tong Chen
Jean-Bernard Lasserre
Victor Magron
Edouard Pauwels
机构
[1] LAAS-CNRS,IMT
[2] Université Toulouse 3 Paul Sabatier,IRIT, CNRS
[3] Université de Toulouse,undefined
来源
Computational Optimization and Applications | 2022年 / 81卷
关键词
Polynomial optimization; Moment-SOS hierarchy; Semi-definite programming; Sublevel hierarchy;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce a sublevel Moment-SOS hierarchy where each SDP relaxation can be viewed as an intermediate (or interpolation) between the d-th and (d+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(d+1)$$\end{document}-th order SDP relaxations of the Moment-SOS hierarchy (dense or sparse version). With the flexible choice of determining the size (level) and number (depth) of subsets in the SDP relaxation, one is able to obtain different improvements compared to the d-th order relaxation, based on the machine memory capacity. In particular, we provide numerical experiments for d=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=1$$\end{document} and various types of problems both in combinatorial optimization (Max-Cut, Mixed Integer Programming) and deep learning (robustness certification, Lipschitz constant of neural networks), where the standard Lasserre’s relaxation (or its sparse variant) is computationally intractable. In our numerical results, the lower bounds from the sublevel relaxations improve the bound from Shor’s relaxation (first order Lasserre’s relaxation) and are significantly closer to the optimal value or to the best-known lower/upper bounds.
引用
收藏
页码:31 / 66
页数:35
相关论文
共 50 条
  • [1] A sublevel moment-SOS hierarchy for polynomial optimization
    Chen, Tong
    Lasserre, Jean-Bernard
    Magron, Victor
    Pauwels, Edouard
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2022, 81 (01) : 31 - 66
  • [2] A note on the computational complexity of the moment-SOS hierarchy for polynomial optimization
    Gribling, Sander
    Polak, Sven
    Slot, Lucas
    PROCEEDINGS OF THE INTERNATIONAL SYMPOSIUM ON SYMBOLIC & ALGEBRAIC COMPUTATION, ISSAC 2023, 2023, : 280 - 288
  • [3] Slow Convergence of the Moment-SOS Hierarchy for an Elementary Polynomial Optimization Problem
    Henrion, Didier
    Le Franc, Adrien
    Magron, Victor
    SIAM JOURNAL ON APPLIED ALGEBRA AND GEOMETRY, 2025, 9 (01): : 261 - 278
  • [4] TSSOS: A MOMENT-SOS HIERARCHY THAT EXPLOITS TERM SPARSITY
    Wang, Jie
    Magron, Victor
    Lasserre, Jean-Bernard
    SIAM JOURNAL ON OPTIMIZATION, 2021, 31 (01) : 30 - 58
  • [5] The moment-SOS hierarchy and the Christoffel–Darboux kernel
    Jean B. Lasserre
    Optimization Letters, 2021, 15 : 1835 - 1845
  • [6] A POLYNOMIAL OPTIMIZATION FRAMEWORK FOR POLYNOMIAL QUASI-VARIATIONAL INEQUALITIES WITH MOMENT-SOS RELAXATIONS
    Tang, Xindong
    Zhang, Min
    Zhong, Wenzhi
    NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2024,
  • [7] The moment-SOS hierarchy and the Christoffel-Darboux kernel
    Lasserre, Jean B.
    OPTIMIZATION LETTERS, 2021, 15 (06) : 1835 - 1845
  • [8] The Moment-SOS hierarchy: Applications and related topics
    Lasserre, Jean B.
    ACTA NUMERICA, 2024, 33 : 841 - 908
  • [9] MOMENT-SOS HIERARCHY AND EXIT LOCATION OF STOCHASTIC PROCESSES
    Henrion, Didier
    Junca, Mauricio
    Velasco, Mauricio
    NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2024,
  • [10] Application of the Moment-SOS Approach to Global Optimization of the OPF Problem
    Josz, Cedric
    Maeght, Jean
    Panciatici, Patrick
    Gilbert, Jean Charles
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2015, 30 (01) : 463 - 470