On the distance α-spectral radius of a connected graph

被引:0
|
作者
Haiyan Guo
Bo Zhou
机构
[1] South China Normal University,School of Mathematical Sciences
来源
Journal of Inequalities and Applications | / 2020卷
关键词
Distance spectral radius; Distance signless Laplacian spectral radius; Local graft transformation; Extremal graph; 05C50; 05C12;
D O I
暂无
中图分类号
学科分类号
摘要
For a connected graph G and α∈[0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha \in [0,1)$\end{document}, the distance α-spectral radius of G is the spectral radius of the matrix Dα(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$D_{\alpha }(G)$\end{document} defined as Dα(G)=αT(G)+(1−α)D(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$D_{\alpha }(G)=\alpha T(G)+(1-\alpha )D(G)$\end{document}, where T(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T(G)$\end{document} is a diagonal matrix of vertex transmissions of G and D(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$D(G)$\end{document} is the distance matrix of G. We give bounds for the distance α-spectral radius, especially for graphs that are not transmission regular, propose local graft transformations that decrease or increase the distance α-spectral radius, and determine the graphs that minimize and maximize the distance α-spectral radius among several families of graphs.
引用
收藏
相关论文
共 50 条