A Dirichlet type problem for complex polyharmonic functions

被引:0
作者
H. Grzebuła
S. Michalik
机构
[1] Cardinal Stefan Wyszyński University,Faculty of Mathematics and Natural Sciences, College of Science
来源
Acta Mathematica Hungarica | 2017年 / 153卷
关键词
Dirichlet problem; polyharmonic function; Almansi expansion; Lie ball; 31B30; 32A25; 32A50; 35J40;
D O I
暂无
中图分类号
学科分类号
摘要
We extend holomorphically polyharmonic functions on a real ball to a complex set being the union of rotated balls. We solve a Dirichlet type problem for complex polyharmonic functions with the boundary condition given on the union of rotated spheres.
引用
收藏
页码:216 / 229
页数:13
相关论文
共 6 条
[1]  
Łysik G.(2011)On the mean-value property for polyharmonic functions Acta Math. Hungar., 133 133-139
[2]  
Łysik G.(2012)Mean-value properties of real analytic functions Arch. Math. (Basel), 98 61-70
[3]  
Łysik G.(2016)Higher order Pizzetti’s formulas Rend. Lincei Mat. Appl., 27 105-115
[4]  
Michalik S.(2016)Summable solutions of some partial differential equations and generalised integral means J. Math. Anal. Appl., 444 1242-1259
[5]  
Morimoto M.(1980)Analytic functionals on the Lie sphere Tokyo J. Math., 3 1-35
[6]  
Siciak J.(1974)Holomorphic continuation of harmonic functions Ann. Polon. Math., 29 67-73