Cancer classification based on microarray gene expression data using a principal component accumulation method

被引:0
|
作者
JingJing Liu
WenSheng Cai
XueGuang Shao
机构
[1] Nankai University,Research Center for Analytical Sciences, College of Chemistry
来源
Science China Chemistry | 2011年 / 54卷
关键词
cancer classification; principal component analysis; principal component accumulation; gene expression data;
D O I
暂无
中图分类号
学科分类号
摘要
The classification of cancer is a major research topic in bioinformatics. The nature of high dimensionality and small size associated with gene expression data, however, makes the classification quite challenging. Although principal component analysis (PCA) is of particular interest for the high-dimensional data, it may overemphasize some aspects and ignore some other important information contained in the richly complex data, because it displays only the difference in the first two- or three-dimensional PC subspaces. Based on PCA, a principal component accumulation (PCAcc) method was proposed. It employs the information contained in multiple PC subspaces and improves the class separability of cancers. The effectiveness of the present method was evaluated by four commonly used gene expression datasets, and the results show that the method performs well for cancer classification.
引用
收藏
页码:802 / 811
页数:9
相关论文
共 50 条
  • [41] A Weighted Principal Component Analysis and Its Application to Gene Expression Data
    da Costa, Joaquim F. Pinto
    Alonso, Hugo
    Roque, Luis
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2011, 8 (01) : 246 - 252
  • [42] Selecting significant genes by randomization test for cancer classification using gene expression data
    Mao, Zhiyi
    Cai, Wensheng
    Shao, Xueguang
    JOURNAL OF BIOMEDICAL INFORMATICS, 2013, 46 (04) : 594 - 601
  • [43] Mapping microarray gene expression data into dissimilarity spaces for tumor classification
    Garcia, Vicente
    Sanchez, J. Salvador
    INFORMATION SCIENCES, 2015, 294 : 362 - 375
  • [44] Gene Subset Selection for Leukemia Classification Using Microarray Data
    Fajila, Mohamed Nisper Fathima
    CURRENT BIOINFORMATICS, 2019, 14 (04) : 353 - 358
  • [45] Random Forest for Gene Selection and Microarray Data Classification
    Moorthy, Kohbalan
    Mohamad, Mohd Saberi
    KNOWLEDGE TECHNOLOGY, 2012, 295 : 174 - 183
  • [46] Use of principal component analysis and the GE-biplot for the graphical exploration of gene expression data
    Pittelkow, Y
    Wilson, SR
    BIOMETRICS, 2005, 61 (02) : 630 - 632
  • [47] Artificial neural network classification of microarray data using new hybrid gene selection method
    Aziz, Rabia
    Verma, C. K.
    Jha, Manoj
    Srivastava, Namita
    INTERNATIONAL JOURNAL OF DATA MINING AND BIOINFORMATICS, 2017, 17 (01) : 42 - 65
  • [48] A Novel Biclustering Based Missing Value Prediction Method for Microarray Gene Expression Data
    Bose, Shilpi
    Das, Chandra
    Chattopadhyay, Samiran
    PROCEEDINGS 2015 INTERNATIONAL CONFERENCE ON MAN AND MACHINE INTERFACING (MAMI), 2015,
  • [49] Effective Cancer Classification based on Gene Expression Data using Multidimensional Mutual Information and ELM
    Zhu, Qun-Xiong
    Fan, Yuan
    He, Yan-Lin
    Xu, Yuan
    PROCEEDINGS OF 2018 IEEE 7TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS CONFERENCE (DDCLS), 2018, : 954 - 958
  • [50] Cancer Classification of Gene Expression Data using Machine Learning Models
    De Guia, Joseph M.
    Devaraj, Madhavi
    Vea, Larry A.
    2018 IEEE 10TH INTERNATIONAL CONFERENCE ON HUMANOID, NANOTECHNOLOGY, INFORMATION TECHNOLOGY, COMMUNICATION AND CONTROL, ENVIRONMENT AND MANAGEMENT (HNICEM), 2018,