Multi-label classification via multi-target regression on data streams

被引:1
|
作者
Aljaž Osojnik
Panče Panov
Sašo Džeroski
机构
[1] Jožef Stefan Institute,
[2] Jožef Stefan International Postgraduate School,undefined
[3] Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins,undefined
来源
Machine Learning | 2017年 / 106卷
关键词
Multi-label classification; Multi-target regression; Data stream mining;
D O I
暂无
中图分类号
学科分类号
摘要
Multi-label classification (MLC) tasks are encountered more and more frequently in machine learning applications. While MLC methods exist for the classical batch setting, only a few methods are available for streaming setting. In this paper, we propose a new methodology for MLC via multi-target regression in a streaming setting. Moreover, we develop a streaming multi-target regressor iSOUP-Tree that uses this approach. We experimentally compare two variants of the iSOUP-Tree method (building regression and model trees), as well as ensembles of iSOUP-Trees with state-of-the-art tree and ensemble methods for MLC on data streams. We evaluate these methods on a variety of measures of predictive performance (appropriate for the MLC task). The ensembles of iSOUP-Trees perform significantly better on some of these measures, especially the ones based on label ranking, and are not significantly worse than the competitors on any of the remaining measures. We identify the thresholding problem for the task of MLC on data streams as a key issue that needs to be addressed in order to obtain even better results in terms of predictive performance.
引用
收藏
页码:745 / 770
页数:25
相关论文
共 50 条
  • [21] Multi-label classification with label clusters
    Gatto, Elaine Cecilia
    Ferrandin, Mauri
    Cerri, Ricardo
    KNOWLEDGE AND INFORMATION SYSTEMS, 2025, 67 (02) : 1741 - 1785
  • [22] Label Expansion for Multi-Label Classification
    Rivolli, Adriano
    Soares, Carlos
    de Carvalho, Andre C. P. L. F.
    2018 7TH BRAZILIAN CONFERENCE ON INTELLIGENT SYSTEMS (BRACIS), 2018, : 414 - 419
  • [23] Unsupervised concept drift detection for multi-label data streams
    Ege Berkay Gulcan
    Fazli Can
    Artificial Intelligence Review, 2023, 56 : 2401 - 2434
  • [24] Unsupervised concept drift detection for multi-label data streams
    Gulcan, Ege Berkay
    Can, Fazli
    ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (03) : 2401 - 2434
  • [25] Air pollution prediction via multi-label classification
    Corani, Giorgio
    Scanagatta, Mauro
    ENVIRONMENTAL MODELLING & SOFTWARE, 2016, 80 : 259 - 264
  • [26] The advances in multi-label classification
    Chen, Shijun
    Gao, Lin
    2014 INTERNATIONAL CONFERENCE ON MANAGEMENT OF E-COMMERCE AND E-GOVERNMENT (ICMECG), 2014, : 240 - 245
  • [27] Multi-label Deepfake Classification
    Singh, Inder Pal
    Mejri, Nesryne
    Nguyen, Van Dat
    Ghorbel, Enjie
    Aouada, Djamila
    2023 IEEE 25TH INTERNATIONAL WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING, MMSP, 2023,
  • [28] Multi-label Dysfluency Classification
    Jouaiti, Melanie
    Dautenhahn, Kerstin
    SPEECH AND COMPUTER, SPECOM 2022, 2022, 13721 : 290 - 301
  • [29] Multi-label classification via label correlation and first order feature dependance in a data stream
    Tien Thanh Nguyen
    Thi Thu Thuy Nguyen
    Anh Vu Luong
    Quoc Viet Hung Nguyen
    Liew, Alan Wee-Chung
    Stantic, Bela
    PATTERN RECOGNITION, 2019, 90 : 35 - 51
  • [30] Parallelization of Multi-label classification for large data sets
    Biswas, Shinjini
    Devi, V. Susheela
    2018 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI), 2018, : 2005 - 2010