Riesz potentials and Sobolev-type inequalities in Orlicz-Morrey spaces of an integral form

被引:0
作者
Takao Ohno
Tetsu Shimomura
机构
[1] Oita University,Faculty of Education
[2] Hiroshima University,Department of Mathematics, Graduate School of Humanities and Social Sciences
来源
Czechoslovak Mathematical Journal | 2023年 / 73卷
关键词
Riesz potential; Sobolev’s inequality; Orlicz-Morrey space; metric measure space; non-doubling measure; 46E35; 46E30;
D O I
暂无
中图分类号
学科分类号
摘要
Our aim is to give Sobolev-type inequalities for Riesz potentials of functions in Orlicz-Morrey spaces of an integral form over non-doubling metric measure spaces as an extension of T. Ohno, T. Shimomura (2022). Our results are new even for the doubling metric measure spaces.
引用
收藏
页码:263 / 276
页数:13
相关论文
共 67 条
[31]  
Shimomura T(1981)Sobolev embeddings for Riesz potentials of functions in non-doubling Morrey spaces of variable exponents Ann. Math. (2) 114 115-undefined
[32]  
Mizuta Y(undefined)Maximal operator on Orlicz spaces of two variable exponents over unbounded quasi-metric measure spaces undefined undefined undefined-undefined
[33]  
Shimomura T(undefined)A remark on modified Morrey spaces on metric measure spaces undefined undefined undefined-undefined
[34]  
Mizuta Y(undefined)Weak and strong type estimates for fractional integral operators on Morrey spaces over metric measure spaces undefined undefined undefined-undefined
[35]  
Shimomura T(undefined)Examples of metric measure spaces related to modified Hardy-Littlewood maximal operators undefined undefined undefined-undefined
[36]  
Mizuta Y(undefined)Weak type undefined undefined undefined-undefined
[37]  
Shimomura T(undefined) estimates for maximal functions on non-compact symmetric spaces undefined undefined undefined-undefined
[38]  
Sobukawa T(undefined)undefined undefined undefined undefined-undefined
[39]  
Morrey C B(undefined)undefined undefined undefined undefined-undefined
[40]  
Nakai E(undefined)undefined undefined undefined undefined-undefined