Riesz potentials and Sobolev-type inequalities in Orlicz-Morrey spaces of an integral form

被引:0
作者
Takao Ohno
Tetsu Shimomura
机构
[1] Oita University,Faculty of Education
[2] Hiroshima University,Department of Mathematics, Graduate School of Humanities and Social Sciences
来源
Czechoslovak Mathematical Journal | 2023年 / 73卷
关键词
Riesz potential; Sobolev’s inequality; Orlicz-Morrey space; metric measure space; non-doubling measure; 46E35; 46E30;
D O I
暂无
中图分类号
学科分类号
摘要
Our aim is to give Sobolev-type inequalities for Riesz potentials of functions in Orlicz-Morrey spaces of an integral form over non-doubling metric measure spaces as an extension of T. Ohno, T. Shimomura (2022). Our results are new even for the doubling metric measure spaces.
引用
收藏
页码:263 / 276
页数:13
相关论文
共 67 条
[1]  
Adams D R(1975)A note on Riesz potentials Duke Math. J. 42 765-778
[2]  
Burenkov V I(2004)Necessary and sufficient conditions for boundedness of the maximal operator in local Morrey-type spaces Stud. Math. 163 157-176
[3]  
Guliyev H V(2018)The boundedness of fractional maximal operators on variable Lebesgue spaces over spaces of homogeneous type Stud. Math. 242 109-139
[4]  
Cruz-Uribe D V(2000)Sobolev met Poincaré Mem. Am. Math. Soc. 688 101-66
[5]  
Shukla P(2020)Gagliardo-Nirenberg inequality for generalized Riesz potentials of functions in Musielak-Orlicz spaces over quasi-metric measure spaces Colloq. Math. 161 51-510
[6]  
Hajłasz P(1972)On certain convolution inequalities Proc. Am. Math. Soc. 36 505-90
[7]  
Koskela P(2021)On Trudinger-type inequalities in Orlicz-Morrey spaces of an integral form Can. Math. Bull. 64 75-56
[8]  
Hashimoto D(2013)Two-weight norm inequalities for potential type and maximal operators in a metric space Publ. Mat., Barc. 57 3-253
[9]  
Sawano Y(2014)Sharp weighted bounds for fractional integral operators in a space of homogeneous type Math. Scand. 114 226-96
[10]  
Shimomura T(2013)Boundedness of maximal operators and Sobolev’s inequality on Musielak-Orlicz-Morrey spaces Bull. Sci. Math. 137 76-495