Nonlinear system identification using fractional Hammerstein–Wiener models

被引:0
作者
Karima Hammar
Tounsia Djamah
Maamar Bettayeb
机构
[1] UMMTO,Laboratoire de Conception et Conduite des Systèmes de, Production (L2CSP)
[2] University of Sharjah UAE and (CEIES),Department of Electrical and Computer Engineering
[3] King Abdulaziz University,undefined
来源
Nonlinear Dynamics | 2019年 / 98卷
关键词
Identification; Nonlinear system; Fractional order systems; Hammerstein–Wiener model; Levenberg–Marquardt algorithm; Regression;
D O I
暂无
中图分类号
学科分类号
摘要
The paper deals with identification of fractional order nonlinear systems based on Hammerstein–Wiener models. An output error approach is developed using the robust Levenberg–Marquardt algorithm. It presents the difficulty of the parametric sensitivity functions calculation which requires a heavy computational load at each iteration. To overcome this drawback, the fractional nonlinear system is reformulated under a regression form, and the gradient and the Hessian can be obtained in a closed form without using the parametric sensitivity functions. The method’s efficiency is confirmed on numerical simulations, and its feasibility is illustrated with its application to the modeling of an experimental arm robot.
引用
收藏
页码:2327 / 2338
页数:11
相关论文
共 50 条
[21]   Exponentially weighted aggregation of models for Wiener-Hammerstein system modelling [J].
Wachel, Pawel ;
Hasiewisz, Zygmunt .
2017 22ND INTERNATIONAL CONFERENCE ON METHODS AND MODELS IN AUTOMATION AND ROBOTICS (MMAR), 2017, :805-809
[22]   A fractional approach to identify Wiener-Hammerstein systems [J].
Vanbeylen, Laurent .
AUTOMATICA, 2014, 50 (03) :903-909
[23]   Identification of a class of Wiener and Hammerstein-type nonlinear processes with monotonic static gains [J].
Mehta, Utkal ;
Majhi, Somanath .
ISA TRANSACTIONS, 2010, 49 (04) :501-509
[24]   Identification of Wiener and Hammerstein Systems with Rate Saturation [J].
Yong, A. Y. K. ;
Tan, A. H. ;
Cham, C. L. .
2018 IEEE INTERNATIONAL CONFERENCE ON AUTOMATIC CONTROL AND INTELLIGENT SYSTEMS (I2CACIS), 2018, :1-6
[25]   Identification of nonlinear system using extreme learning machine based Hammerstein model [J].
Tang, Yinggan ;
Li, Zhonghui ;
Guan, Xinping .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (09) :3171-3183
[26]   Nonlinear predictive control for Hammerstein-Wiener systems [J].
Lawrynczuk, Maciej .
ISA TRANSACTIONS, 2015, 55 :49-62
[27]   Nonlinear Hammerstein model identification using Genetic Algorithm [J].
Akramizadeh, A ;
Farjami, AA ;
Khaloozadeh, H .
2002 IEEE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE SYSTEMS, PROCEEDINGS, 2002, :351-356
[28]   Behaviour modelling of wideband RF transmitters using Hammerstein-Wiener models [J].
Taringou, F. ;
Hammi, O. ;
Srinivasan, B. ;
Malhame, R. ;
Ghannouchi, F. M. .
IET CIRCUITS DEVICES & SYSTEMS, 2010, 4 (04) :282-290
[29]   Fractional Hammerstein system identification using polynomial non-linear state space model [J].
Hammar, Karima ;
Djamah, Tounsia ;
Bettayeb, Maamar .
3RD INTERNATIONAL CONFERENCE ON CONTROL, ENGINEERING & INFORMATION TECHNOLOGY (CEIT 2015), 2015,
[30]   Structural estimation of Wiener-Hammerstein mathematical models [J].
Ghanmi, Afef ;
Kamoun, Samira ;
Hajji, Sofien .
2015 4TH INTERNATIONAL CONFERENCE ON SYSTEMS AND CONTROL (ICSC), 2015, :85-90