Global Existence of Heat-Conductive Incompressible Viscous Fluids

被引:0
作者
Xia Ye
机构
[1] Jiangxi Normal University,College of Mathematics and Information Science
来源
Acta Applicandae Mathematicae | 2017年 / 148卷
关键词
Heat-conducting fluids; local existence; global existence;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the Cauchy problem of non-stationary motion of heat-conducting incompressible viscous fluids in R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{R}^{2}$\end{document}, where the viscosity and heat-conductivity coefficient vary with the temperature. It is shown that the Cauchy problem has a unique global-in-time strong solution (u,θ)(x,t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(u, \theta)(x,t)$\end{document} on R2×(0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{R}^{2}\times(0,\infty)$\end{document}, provided the initial norm ∥∇u0∥L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\|\nabla u_{0}\|_{L^{2}}$\end{document} is suitably small, or the lower-bound of the coefficient of heat conductivity (i.e. κ_\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\underline{\kappa}$\end{document}) is large enough, or the derivative of viscosity (i.e. |μ′(θ)|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$|\mu'(\theta)|$\end{document}) is small enough.
引用
收藏
页码:61 / 69
页数:8
相关论文
共 17 条
  • [1] Beneš M.(2011)Strong solutions to non-stationary channel flows of heat-conducting viscous incompressible fluids with dissipative heating Acta Appl. Math. 116 237-254
  • [2] Bulíček M.(2009)A Navier-Stokes-Fourier system for incompressible fluids with temperature dependent material coefficients Nonlinear Anal., Real World Appl. 10 992-1015
  • [3] Feireisl E.(2011)An Appl. Anal. 90 31-45
  • [4] Málek J.(2014)-maximal regularity result for the evolutionary Stokes-Fourier system Nonlinear Anal., Real World Appl. 19 89-104
  • [5] Bulíček M.(2013)On the regularity of two-dimensional unsteady flows of heat-conducting generalized newtonian fluids Discrete Contin. Dyn. Syst. 33 2271-2297
  • [6] Kaplický P.(1995)Existence of smooth solutions to coupled chemotaxis-fluid equations Hiroshima Math. J. 25 251-311
  • [7] Málek J.(2010)Attractors for two-dimensional equations of thermal convection in the presence of the dissipation function Hiroshima Math. J. 40 371-402
  • [8] Bulíček M.(2006)The initial value problem for motion of incompressible viscous and heat-conductive fluids in Banach space Math. Methods Appl. Sci. 29 1883-1906
  • [9] Málek J.(2005)On the existence of weak solutions to the equations of non-stationary motion of heat-conducting in compressible viscous fluids J. Math. Fluid Mech. 7 72-84
  • [10] Shilkin T.(undefined)Classical solvability of the coupled system modelling a heat-convergent Poiseuille-type flow undefined undefined undefined-undefined