A machine-learning potential-based generative algorithm for on-lattice crystal structure prediction

被引:3
|
作者
Sotskov, Vadim [1 ]
Podryabinkin, Evgeny V. [1 ]
Shapeev, Alexander V. [1 ]
机构
[1] Skolkovo Inst Sci & Technol, Skolkovo Innovat Ctr, Bolshoi Blvd 30,Bldg 1, Moscow 121205, Russia
基金
俄罗斯科学基金会;
关键词
ALLOYS;
D O I
10.1557/s43578-023-01167-7
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We propose a crystal structure prediction method based on a novel structure generation algorithm and on-lattice machine-learning interatomic potentials. Our algorithm generates atomic configurations with arbitrary supercells by assigning atomic species to sites on the given lattice and evaluates their energy using machine-learned potentials. We demonstrate two advantages of this approach. Firstly, our structure generation algorithm conducts intelligent configurational space sampling, focusing on low-energy structures and reducing computational costs. Secondly, the use of machine-learning interatomic potentials significantly reduces the number of DFT calculations. We demonstrate the efficiency of our method by constructing the convex hull of binary Nb-W, ternary Mo-Ta-W and quaternary Nb-Mo-Ta-W systems. We identify new stable structures not present in the AFLOW database, which we employ as our baseline. Due to the computational efficiency of our method, we anticipate that it can pave the way for the efficient high-throughput discovery of multicomponent materials.
引用
收藏
页码:5161 / 5170
页数:10
相关论文
共 50 条
  • [21] Crystal structure prediction with machine learning-based element substitution
    Kusaba, Minoru
    Liu, Chang
    Yoshida, Ryo
    COMPUTATIONAL MATERIALS SCIENCE, 2022, 211
  • [22] Image-based crystal detection: a machine-learning approach
    Liu, Roy
    Freund, Yoav
    Spraggon, Glen
    ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2008, 64 : 1187 - 1195
  • [23] Machine-learning based prediction of crash response of tubular structures
    Sakaridis, Emmanouil
    Karathanasopoulos, Nikolaos
    Mohr, Dirk
    INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 2022, 166
  • [24] Machine-learning based VMAF prediction for HDR video content
    Mueller, Christoph
    Steglich, Stephan
    Gross, Sandra
    Kremer, Paul
    PROCEEDINGS OF THE 2023 PROCEEDINGS OF THE 14TH ACM MULTIMEDIA SYSTEMS CONFERENCE, MMSYS 2023, 2023, : 328 - 332
  • [25] Machine-learning correction to density-functional crystal structure optimization
    Hussein, Robert
    Schmidt, Jonathan
    Barros, Tomas
    Marques, Miguel A. L.
    Botti, Silvana
    MRS BULLETIN, 2022, 47 (08) : 765 - 771
  • [26] Machine-learning correction to density-functional crystal structure optimization
    Robert Hussein
    Jonathan Schmidt
    Tomás Barros
    Miguel A. L. Marques
    Silvana Botti
    MRS Bulletin, 2022, 47 : 765 - 771
  • [27] Prediction of pyrazinamide resistance in Mycobacterium tuberculosis using structure-based machine-learning approaches
    Carter, Joshua J.
    Walker, Timothy M.
    Walker, A. Sarah
    Whitfield, Michael G.
    Morlock, Glenn P.
    Lynch, Charlotte, I
    Adlard, Dylan
    Peto, Timothy E. A.
    Posey, James E.
    Crook, Derrick W.
    Fowler, Philip W.
    JAC-ANTIMICROBIAL RESISTANCE, 2024, 6 (02):
  • [28] Ternary mixed-anion semiconductors with tunable band gaps from machine-learning and crystal structure prediction
    Amsler, Maximilian
    Ward, Logan
    Hegde, Vinay, I
    Goesten, Maarten G.
    Yi, Xia
    Wolverton, Chris
    PHYSICAL REVIEW MATERIALS, 2019, 3 (03)
  • [29] Prediction of fast neutron spectra with a spherical TEPC using a machine-learning algorithm
    Antoni, Rodolphe
    Allinei, Pierre-Guy
    Bourgois, Laurent
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2023, 1050
  • [30] ANGLOR: A Composite Machine-Learning Algorithm for Protein Backbone Torsion Angle Prediction
    Wu, Sitao
    Zhang, Yang
    PLOS ONE, 2008, 3 (10):