Logarithmic corrections to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{N} = 2}$$\end{document} black hole entropy: an infrared window into the microstates

被引:0
作者
Ashoke Sen
机构
[1] Harish-Chandra Research Institute,
关键词
String theory; Black holes; supersymmetry;
D O I
10.1007/s10714-012-1336-5
中图分类号
学科分类号
摘要
Logarithmic corrections to the extremal black hole entropy can be computed purely in terms of the low energy data—the spectrum of massless fields and their interaction. The demand of reproducing these corrections provides a strong constraint on any microscopic theory of quantum gravity that attempts to explain the black hole entropy. Using quantum entropy function formalism we compute logarithmic corrections to the entropy of half BPS black holes in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal N}=2}$$\end{document} supersymmetric string theories. Our results allow us to test various proposals for the measure in the OSV formula, and we find agreement with the measure proposed by Denef and Moore if we assume their result to be valid at weak topological string coupling. Our analysis also gives the logarithmic corrections to the entropy of extremal Reissner–Nordstrom black holes in ordinary Einstein–Maxwell theory.
引用
收藏
页码:1207 / 1266
页数:59
相关论文
共 175 条
  • [1] Wald R.M.(1993)Black hole entropy in the Noether charge Phys. Rev. D 48 3427-187
  • [2] Jacobson T.(1994)On black hole entropy Phys. Rev. D 49 6587-132
  • [3] Kang G.(1994)Some properties of Noether charge and a proposal for dynamical black hole entropy Phys. Rev. D 50 846-212
  • [4] Myers R.C.(2005)Black hole entropy function and the attractor mechanism in higher derivative gravity JHEP 0509 038-109
  • [5] Iyer V.(2006)Entropy function for heterotic black holes JHEP 0603 008-724
  • [6] Wald R.M.(2009)Quantum entropy function from AdS(2)/CFT(1) correspondence Int. J. Mod. Phys. A 24 4225-126
  • [7] Sen A.(2008)Entropy function and AdS(2)/CFT(1) correspondence JHEP 0811 075-318
  • [8] Sen A.(1997)Counting dyons in N = 4 string theory Nucl. Phys. B 484 543-55
  • [9] Sen A.(2004)Asymptotic degeneracy of dyonic JHEP 0412 075-1565
  • [10] Sen A.(2006) = 4 string states and black hole JHEP 0604 034-undefined