On the Global Dynamics of Yang–Mills–Higgs Equations

被引:0
作者
Dongyi Wei
Shiwu Yang
Pin Yu
机构
[1] Peking University,School of Mathematical Sciences
[2] Peking University,Beijing International Center for Mathematical Research
[3] Tsinghua University,Department of Mathematical Sciences
来源
Communications in Mathematical Physics | 2024年 / 405卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We study solutions to the Yang–Mills–Higgs equations on the maximal Cauchy development of the data given on a ball of radius R in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^3$$\end{document}. The energy of the data could be infinite and the solution grows at most inverse polynomially in R-t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R-t$$\end{document} as t→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\rightarrow R$$\end{document}. As applications, we derive pointwise decay estimates for Yang–Mills–Higgs fields in the future of a hyperboloid or in the Minkowski space R1+3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^{1+3}$$\end{document} for data bounded in the weighted energy space with weights |x|1+ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|x|^{1+\epsilon }$$\end{document}. Moreover, for the abelian case of Maxwell–Klein–Gordon system, we extend the small data result of Lindblad and Sterbenz (IMRP Int Math Res Pap 109:1687-3017, 2006) to general large data (under same assumptions but without any smallness). The proof is gauge independent and it is based on the framework of Eardley and Moncrief (Commun Math Phys 83(2):171–191, 1982a, 1982b) together with the geometric Kirchhoff–Sobolev parametrix constructed by Klainerman and Rodnianski (J Hyperbolic Differ Equ 4(3):401–433, 2007). The new ingredient is a class of weighted energy estimates through backward light cones adapted to the initial data.
引用
收藏
相关论文
共 71 条
[1]  
Tesfahun A(2015)Local well-posedness of Yang–Mills equations in Lorenz gauge below the energy norm NoDEA Nonlinear Differ. Equ. Appl. 22 849-875
[2]  
Bieri L(2017)Asymptotic properties of solutions of the Maxwell Klein Gordon equation with small data Commun. Anal. Geom. 25 25-96
[3]  
Miao S(2019)Asymptotic behavior of the Maxwell–Klein–Gordon system Commun. Math. Phys. 367 683-716
[4]  
Shahshahani S(1985)Global solutions of Yang–Mills field equations Rend. Sem. Mat. Fis. Milano 52 1982-506
[5]  
Candy T(1981)Existence of global solutions of the Yang–Mills, Higgs and spinor field equations in Ann. Sci. École Norm. Sup. (4) 14 481-150
[6]  
Kauffman C(1983) dimensions J. Funct. Anal. 53 112-230
[7]  
Lindblad H(1982)The Yang–Mills equations on the universal cosmos C. R. Acad. Sci. Paris Sér. I Math. 294 225-282
[8]  
Choquet-Bruhat Y(1986)Solution globale des équations de Yang–Mills sur l’univers d’Einstein Commun. Pure Appl. Math. 39 267-1881
[9]  
Choquet-Bruhat Y(1987)Global solutions of nonlinear hyperbolic equations for small initial data Phys. Rev. D (3) 36 1874-548
[10]  
Christodoulou D(1997)Some global charges in classical Yang–Mills theory Asian J. Math. 1 530-191