Eigenvalues of a special kind of symmetric block circulant matrices

被引:1
作者
Ligong W. [1 ,2 ]
Xueliang L. [3 ]
Hoede C. [4 ]
机构
[1] Dept. of Math. and Inform. Sci, Northwestern Polytechnical University, Shaanxi
[2] Dept. of Computer Science and Engineering, Northwestern Polytechnical University, Shaanxi
[3] Center for Combinatorics, Nankai University, Tianjin
[4] Faculty of Mathematical Science, University of Twente, P. O. Box 217, Enschede
基金
中国国家自然科学基金;
关键词
Block circulant matrix; Characteristic polynomial; Eigenvalue; Integral graph;
D O I
10.1007/s11766-004-0017-x
中图分类号
学科分类号
摘要
In this paper, the spectrum and characteristic polynomial for a special kind of symmetric block circuIant matrices are given. © 2004 Springer Verlag.
引用
收藏
页码:17 / 26
页数:9
相关论文
共 11 条
  • [1] Bellman R., Introduction to Matrix Analysis, (1970)
  • [2] Davis P.J., Circulant Matrices, (1979)
  • [3] Gangyuan M., Circulant Matrices and Their Applications on Molecular Vibration, (1995)
  • [4] Cao Zhihao A., Note on symmetric block circulant matrix, J. Math. Res. Exposition, 10, 3, pp. 469-473, (1990)
  • [5] Harary F., Schwenk A.J., Which graphs have integral spectra?, Graphs and Combinatorics, Lecture Notes in Mathematics, 406, pp. 45-51, (1974)
  • [6] Biggs N., Algebra Graph Theory, (1993)
  • [7] Schwenk A.J., Wilson R.J., On the eigenvalues of a graph, Selected Topics in Graph Theory Algebra Graph Theory, pp. 307-336, (1978)
  • [8] Harary F., Graph Theory, (1969)
  • [9] Mohar B., The Laplacian spectrum of graphs, Graph Theory, Combinatorics and Applications, pp. 871-898, (1991)
  • [10] Grone R., Merris R., The Laplacian spectrum of a graph II, SIAM J. Discrete Math., 7, 2, pp. 221-229, (1994)