Upper Energy Bounds for Spherical Designs of Relatively Small Cardinalities

被引:0
作者
Peter Boyvalenkov
Konstantin Delchev
Matthieu Jourdain
机构
[1] Bulgarian Academy of Sciences,Institute of Mathematics and Informatics
[2] École de Saint-Cyr Coëtquidan,Département des sciences de l’ingénieur
来源
Discrete & Computational Geometry | 2021年 / 65卷
关键词
Spherical designs; Energy bounds; Linear programming; 05B30; 52C17; 94B65;
D O I
暂无
中图分类号
学科分类号
摘要
We derive upper bounds for the potential energy of spherical designs of cardinality close to the Delsarte–Goethals–Seidel bound. These bounds are obtained by linear programming with use of the Hermite interpolating polynomial of the potential function in suitable nodes. Numerical computations show that the results are quite close to certain lower energy bounds confirming that spherical designs are, in a sense, energy efficient.
引用
收藏
页码:244 / 260
页数:16
相关论文
共 76 条
  • [1] Bannai E(2009)A survey on spherical designs and algebraic combinatorics on spheres Eur. J. Comb. 30 1392-1425
  • [2] Bannai E(1979)Tight spherical designs I J. Math. Soc. Jpn. 31 199-207
  • [3] Bannai E(1980)Tight spherical designs II J. Lond. Math. Soc. 21 13-30
  • [4] Damerell RM(2017)Design theory from the viewpoint of algebraic combinatorics Graphs Comb. 33 1-41
  • [5] Bannai E(2013)Optimal asymptotic bounds for spherical designs Ann. Math. 178 443-452
  • [6] Damerell RM(2015)Well-separated spherical designs Constr. Approx. 41 93-112
  • [7] Bannai E(2008)New asymptotic estimates for spherical designs J. Approx. Theory 152 101-106
  • [8] Bannai E(2009)Polynomial techniques for investigation of spherical designs Des. Codes Crypt. 51 275-288
  • [9] Tanaka H(1995)Extremal polynomials for obtaining bounds for spherical codes and designs Discrete Comput. Geom. 14 167-183
  • [10] Zhu Y(1999)Necessary conditions for existence of some designs in polynomial metric spaces Eur. J. Comb. 20 213-225