Segment Motion in the Reptation Model of Polymer Dynamics. I. Analytical Investigation

被引:0
|
作者
U. Ebert
L. Schäfer
A. Baumgärtner
机构
[1] Instituut-Lorentz,Fachbereich Physik
[2] Universiteit Leiden,undefined
[3] Universität Essen,undefined
[4] Institut für Festkörperforschung and Forum Modellierung,undefined
[5] Forschungszentrum Jülich,undefined
来源
Journal of Statistical Physics | 1998年 / 90卷
关键词
Reptation; polymer dynamics;
D O I
暂无
中图分类号
学科分类号
摘要
We analyze the motion of individual beads of a polymer chain using a discrete version of De Gennes' reptation model that describes the motion of a polymer through an ordered lattice of obstacles. The motion within the tube can be evaluated rigorously; tube renewal is taken into account in an approximation motivated by random walk theory. We find microstructure effects to be present for remarkably large times and long chains, affecting essentially all present-day computer experiments. The various asymptotic power laws commonly considered as typical for reptation hold only for extremely long chains. Furthermore, for an arbitrary segment even in a very long chain, we find a rich variety of fairly broad crossovers, which for practicably accessible chain lengths overlap and smear out the asymptotic power laws. Our analysis suggests observables specifically adapted to distinguish reptation from motions dominated by disorder of the environment.
引用
收藏
页码:1325 / 1373
页数:48
相关论文
共 50 条
  • [1] Segment motion in the reptation model of polymer dynamics. I. Analytical investigation
    Ebert, U
    Schafer, L
    Baumgartner, A
    JOURNAL OF STATISTICAL PHYSICS, 1998, 90 (5-6) : 1325 - 1373
  • [2] Segment Motion in the Reptation Model of Polymer Dynamics. II. Simulations
    A. Baumgärtner
    U. Ebert
    L. Schäfer
    Journal of Statistical Physics, 1998, 90 : 1375 - 1400
  • [3] Segment motion in the reptation model of polymer dynamics. II. Simulations
    Baumgartner, A
    Ebert, U
    Schafer, L
    JOURNAL OF STATISTICAL PHYSICS, 1998, 90 (5-6) : 1375 - 1400
  • [4] Analytical and Numerical Analysis of Circumbinary Disk Dynamics. I. Coplanar Systems
    Mahesh, Siddharth
    Mcwilliams, Sean T.
    Pirog, Michal
    ASTROPHYSICAL JOURNAL, 2024, 973 (01):
  • [5] Stochastic equation of motion approach to fermionic dissipative dynamics. I. Formalism
    Han, Lu
    Ullah, Arif
    Yan, Yun-An
    Zheng, Xiao
    Yan, YiJing
    Chernyak, Vladimir
    JOURNAL OF CHEMICAL PHYSICS, 2020, 152 (20): : 204105
  • [6] POLYMER MOTION AT THE CROSSOVER FROM ROUSE TO REPTATION DYNAMICS
    RICHTER, D
    WILLNER, L
    ZIRKEL, A
    FARAGO, B
    FETTERS, LJ
    HUANG, JS
    MACROMOLECULES, 1994, 27 (25) : 7437 - 7446
  • [7] A model for predicting invasive weed and grass dynamics. I. Model development
    Rinella, MJ
    Sheley, RL
    WEED SCIENCE, 2005, 53 (05) : 586 - 593
  • [8] Boreal forest ecosystem dynamics. I. A new spatial model
    Yarie, J
    CANADIAN JOURNAL OF FOREST RESEARCH, 2000, 30 (06) : 998 - 1009
  • [9] Problems of nonlinear dynamics. I. Chaos
    Loskutov, A.Yu.
    Vestnik Moskovskogo Universita. Ser. 3 Fizika Astronomiya, 2001, (02): : 3 - 21
  • [10] NVU dynamics. I. Geodesic motion on the constant-potential-energy hypersurface
    Ingebrigtsen, Trond S.
    Toxvaerd, Soren
    Heilmann, Ole J.
    Schroder, Thomas B.
    Dyre, Jeppe C.
    JOURNAL OF CHEMICAL PHYSICS, 2011, 135 (10):