Inclusion properties for classes of p-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p-$$\end{document}valent functions associated with linear operator

被引:0
作者
M. K. Aouf
A. O. Mostafa
G. M. El-Hawsh
机构
[1] Mansoura University,Department of Mathematics, Faculty of Science
[2] Fayoum University,Department of Mathematics, Faculty of Science
关键词
Analytic function; valent; Starlike; Convex; Close to convex and quasi convex; 30C45;
D O I
10.1007/s13370-023-01149-2
中图分类号
学科分类号
摘要
The purpose of the present paper is to introduce subclasses of p-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p-$$\end{document}valent functions defined by linear operator. Inclusion relationships for functions in these subclasses are discussed.
引用
收藏
相关论文
共 26 条
  • [1] Aouf MK(1988)A generalization of functions with real part bounded in the mean on the unit disc Math. Japan 33 157-182
  • [2] Aouf MK(1988)A generalization of multivalent functions with negative coefficients J. Korean Math. Soc. 25 53-66
  • [3] Aouf MK(1988)On a class of Internat. J. Math. Math. Sci. 11 259-266
  • [4] Aouf MK(2009)valent close-to-convex functions Acta. Math. Univ. Com. 78 121-135
  • [5] Jung IB(1993)Some families of J. Math. Anal. Appl. 176 138-147
  • [6] Kim YC(1978)valent functions with negative coefficients J. Math. Anal. Appl. 65 289-305
  • [7] Srivastava HM(2006)The Hardy space of analytic functions associated with certain one parameter families of integral operators J. Ineq. Appl. Math. 7 1-6
  • [8] Miller SS(1987)Second -order differential inequalities in the complex plane Internat. J. Math. ematics math. Sci. 10 241-258
  • [9] Mocanu PT(1991)On analytic functions related to certain family of integral operators Math. Japan 36 869-874
  • [10] Noor KI(1992)On quasi-convex functions and related topics Internat. J. Math. Math. Sci. 15 279-290