Noncommutative Valuation Rings of the Quotient Artinian Ring of a Skew Polynomial Ring

被引:0
作者
Guangming Xie
Shigeru Kobayashi
Hidetoshi Marubayashi
Nicolea Popescu
Constantin Vraciu
机构
[1] Naruto University of Education,Department of Mathematics
[2] Institute of Mathematics of the Romanian Academy,Department of Mathematics
[3] University of Bucharest,undefined
来源
Algebras and Representation Theory | 2005年 / 8卷
关键词
skew polynomial ring; Dubrovin valuation ring; total valuation ring; invariant valuation ring; value group;
D O I
暂无
中图分类号
学科分类号
摘要
Let R be a Dubrovin valuation ring of a simple Artinian ring Q and let Q[X,σ] be the skew polynomial ring over Q in an indeterminate X, where σ is an automorphism of Q. Consider the natural map φ from Q[X,σ]XQ[X,σ] to Q, where Q[X,σ]XQ[X,σ] is the localization of Q[X,σ] at the maximal ideal XQ[X,σ] and set \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\widetilde{R}=\varphi^{-1}(R)$\end{document} , the complete inverse image of R by φ. It is shown that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\widetilde{R}$\end{document} is a Dubrovin valuation ring of Q(X,σ) (the quotient ring of Q[X,σ]) and it is characterized in terms of X and Q. In the case where R is an invariant valuation ring, the given automorphism σ is classified into five types, in order to study the structure of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Gamma_{\widetilde{R}}$\end{document} (the value group of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\widetilde{R}$\end{document} ). It is shown that there is a commutative valuation ring R with automorphism σ which belongs to each type and which makes \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Gamma_{\widetilde{R}}$\end{document} Abelian or non-Abelian. Furthermore, some examples are used to show that several ideal-theoretic properties of a Dubrovin valuation ring of Q with finite dimension over its center, do not necessarily hold in the case where Q is infinite-dimensional.
引用
收藏
页码:57 / 68
页数:11
相关论文
共 50 条
[21]   Non-commutative valuation rings of K (X; σ, δ) over a division ring K [J].
Xie, GM ;
Marubayashi, H ;
Kobayashi, S ;
Komatsu, H .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2004, 56 (03) :737-752
[22]   THE McCOY CONDITION ON SKEW POLYNOMIAL RINGS [J].
Baser, Muhittin ;
Kwak, Tai Keun ;
Lee, Yang .
COMMUNICATIONS IN ALGEBRA, 2009, 37 (11) :4026-4037
[23]   Nilpotent Elements and Skew Polynomial Rings [J].
Alhevaz, A. ;
Moussavi, A. ;
Hashemi, E. .
ALGEBRA COLLOQUIUM, 2012, 19 :821-840
[24]   On skew polynomial rings over locally nilpotent rings [J].
Chen, Fei Yu ;
Hagan, Hannah ;
Wang, Allison .
COMMUNICATIONS IN ALGEBRA, 2019, 47 (03) :1102-1104
[25]   Skew polynomial rings of formal triangular matrix rings [J].
Ghahramani, Hoger .
JOURNAL OF ALGEBRA, 2012, 349 (01) :201-216
[26]   ABELIAN FINITE GROUP GRADINGS ON THE SKEW POLYNOMIAL RING k[X][Y,φ] [J].
Buruiana, Cerasela .
UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2010, 72 (04) :155-168
[27]   Graded annihilators of modules over the Frobenius skew polynomial ring, and tight closure [J].
Sharp, Rodney Y. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 359 (09) :4237-4258
[28]   Maximal and Prime Ideals of Skew Polynomial Ring Over the Gauss Integers Domain [J].
Amir, Amir Kamal .
MAKARA JOURNAL OF SCIENCE, 2010, 14 (02) :184-187
[29]   Factor rings of skew polynomial rings over a finite field [J].
L. Oyuntsetseg .
Acta Mathematica Hungarica, 2015, 147 :73-80
[30]   FACTOR RINGS OF SKEW POLYNOMIAL RINGS OVER A FINITE FIELD [J].
Oyuntsetseg, L. .
ACTA MATHEMATICA HUNGARICA, 2015, 147 (01) :73-80