Noncommutative Valuation Rings of the Quotient Artinian Ring of a Skew Polynomial Ring

被引:0
|
作者
Guangming Xie
Shigeru Kobayashi
Hidetoshi Marubayashi
Nicolea Popescu
Constantin Vraciu
机构
[1] Naruto University of Education,Department of Mathematics
[2] Institute of Mathematics of the Romanian Academy,Department of Mathematics
[3] University of Bucharest,undefined
来源
Algebras and Representation Theory | 2005年 / 8卷
关键词
skew polynomial ring; Dubrovin valuation ring; total valuation ring; invariant valuation ring; value group;
D O I
暂无
中图分类号
学科分类号
摘要
Let R be a Dubrovin valuation ring of a simple Artinian ring Q and let Q[X,σ] be the skew polynomial ring over Q in an indeterminate X, where σ is an automorphism of Q. Consider the natural map φ from Q[X,σ]XQ[X,σ] to Q, where Q[X,σ]XQ[X,σ] is the localization of Q[X,σ] at the maximal ideal XQ[X,σ] and set \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\widetilde{R}=\varphi^{-1}(R)$\end{document} , the complete inverse image of R by φ. It is shown that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\widetilde{R}$\end{document} is a Dubrovin valuation ring of Q(X,σ) (the quotient ring of Q[X,σ]) and it is characterized in terms of X and Q. In the case where R is an invariant valuation ring, the given automorphism σ is classified into five types, in order to study the structure of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Gamma_{\widetilde{R}}$\end{document} (the value group of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\widetilde{R}$\end{document} ). It is shown that there is a commutative valuation ring R with automorphism σ which belongs to each type and which makes \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Gamma_{\widetilde{R}}$\end{document} Abelian or non-Abelian. Furthermore, some examples are used to show that several ideal-theoretic properties of a Dubrovin valuation ring of Q with finite dimension over its center, do not necessarily hold in the case where Q is infinite-dimensional.
引用
收藏
页码:57 / 68
页数:11
相关论文
共 50 条
  • [1] Noncommutative valuation rings of the quotient Artinian ring of a skew polynomial ring
    Xie, GM
    Kobayashi, S
    Marubayashi, H
    Popescu, N
    Vraciu, C
    ALGEBRAS AND REPRESENTATION THEORY, 2005, 8 (01) : 57 - 68
  • [2] Sufficient Conditions for a Dubrovin Valuation Ring of a Simple Artinian Ring to be Nil-clean
    Al Habibi, Muhamad Faikar Mustafidz
    Irawati, Santi
    Susanto, Hery
    Sulandra, I. Made
    Marubayashi, Hidetoshi
    Chin, Angelina Yan Mui
    PROCEEDINGS OF THE 8TH SEAMS-UGM INTERNATIONAL CONFERENCE ON MATHEMATICS AND ITS APPLICATIONS 2019: DEEPENING MATHEMATICAL CONCEPTS FOR WIDER APPLICATION THROUGH MULTIDISCIPLINARY RESEARCH AND INDUSTRIES COLLABORATIONS, 2019, 2192
  • [3] Graded Extensions in a Skew Laurent Polynomial Ring
    Xie, Guangming
    Marubayashi, Hidetoshi
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2012, 36 (03) : 441 - 447
  • [4] Radicals of skew polynomial rings and skew Laurent polynomial rings
    Hong, Chan Yong
    Kim, Nam Kyun
    Lee, Yang
    JOURNAL OF ALGEBRA, 2011, 331 (01) : 428 - 448
  • [5] Skew ring extensions and generalized monoid rings
    Cojuhari, E. P.
    Gardner, B. J.
    ACTA MATHEMATICA HUNGARICA, 2018, 154 (02) : 343 - 361
  • [6] Skew ring extensions and generalized monoid rings
    E. P. Cojuhari
    B. J. Gardner
    Acta Mathematica Hungarica, 2018, 154 : 343 - 361
  • [7] A classification of graded extensions in a skew Laurent polynomial ring
    Xie, Guangming
    Marubayashi, Hidetoshi
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2008, 60 (02) : 423 - 443
  • [8] Descriptions of radicals of skew polynomial and skew Laurent polynomial rings
    Hong, Chan Yong
    Kim, Nam Kyun
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2019, 223 (08) : 3413 - 3424
  • [9] A classification of graded extensions in a skew Laurent polynomial ring, II
    Xie, Guangming
    Marubayashi, Hidetoshi
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2009, 61 (04) : 1111 - 1130
  • [10] CHARACTERIZATIONS OF ELEMENTS IN PRIME RADICALS OF SKEW POLYNOMIAL RINGS AND SKEW LAURENT POLYNOMIAL RINGS
    Cheon, Jeoung Soo
    Kim, Eun Jeong
    Lee, Chang Ik
    Shin, Yun Ho
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2011, 48 (02) : 277 - 290