Boundedness of multilinear operators on generalized Morrey spaces

被引:0
作者
Xiao Yu
Xiang-xing Tao
机构
[1] Shangrao Normal University,Department of Mathematics
[2] Zhejiang University of Science and Technology,Department of Mathematics
来源
Applied Mathematics-A Journal of Chinese Universities | 2014年 / 29卷
关键词
multilinear singular integral; multilinear Riesz potential; generalized Morrey space; multilinear maximal function; 42B20; 42B25;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the authors prove the boundedness of the multilinear maximal functions, multilinear singular integrals and multilinear Riesz potential on the product generalized Morrey spaces \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{M}_{p_1 ,\omega _1 } (\mathbb{R}^n ) \times \cdots \times \mathcal{M}_{p_m ,\omega _1 } (\mathbb{R}^n )$\end{document} respectively. The main theorems of this paper extend some known results.
引用
收藏
页码:127 / 138
页数:11
相关论文
共 26 条
[1]  
Adams R(1975)A note on Riesz potential Duke Math J 42 765-778
[2]  
Chen JC(2010)Rough bilinear fractional integrals with variable kernels Front Math China 5 369-378
[3]  
Fan DS(2010)Weighted estimates for a class of fractional type operators J Math Anal Appl 362 355-373
[4]  
Chen X(1987)Morrey spaces and Hardy-Littlewood maximal functions Rend Mat 7 273-279
[5]  
Xue Q Y(1992)On multilinear fractional integrals Studia Math 102 49-56
[6]  
Chiarenza F(2002)Multilinear Calderón-Zygmund theory Adv Math 165 124-164
[7]  
Frasca M(1999)Multilinear estimates and fractional integration Math Res Lett 6 1-15
[8]  
Grafakos L(2009)New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory Adv Math 220 1222-1264
[9]  
Grafakos L(2009)Weighted inequalities for multilinear fractional integral operators Collect Math 60 213-238
[10]  
Torres RH(1938)On the solutions of quasi-linear elliptic partial differential equations Trans Amer Math Soc 43 126-166