Superconvergence and Extrapolation Analysis of a Nonconforming Mixed Finite Element Approximation for Time-Harmonic Maxwell’s Equations

被引:0
作者
Zhonghua Qiao
Changhui Yao
Shanghui Jia
机构
[1] Hong Kong Baptist University,Institute for Computational Mathematics & Department of Mathematics
[2] Zhengzhou University,Department of Mathematics
[3] Central University of Finance and Economics,School of Applied Mathematics
来源
Journal of Scientific Computing | 2011年 / 46卷
关键词
Nonconforming mixed finite element; Superconvergence; Extrapolation; Time-harmonic Maxwell’s equations;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, a nonconforming mixed finite element approximating to the three-dimensional time-harmonic Maxwell’s equations is presented. On a uniform rectangular prism mesh, superclose property is achieved for electric field E and magnetic filed H with the boundary condition E×n=0 by means of the asymptotic expansion. Applying postprocessing operators, a superconvergence result is stated for the discretization error of the postprocessed discrete solution to the solution itself. To our best knowledge, this is the first global superconvergence analysis of nonconforming mixed finite elements for the Maxwell’s equations. Furthermore, the approximation accuracy will be improved by extrapolation method.
引用
收藏
页码:1 / 19
页数:18
相关论文
共 50 条
[41]   Anisotropic rectangular nonconforming finite element analysis for Sobolev equations [J].
Shi Dong-yang ;
Wang Hai-hong ;
Guo Cheng .
APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2008, 29 (09) :1203-1214
[42]   Anisotropic rectangular nonconforming finite element analysis for Sobolev equations [J].
石东洋 ;
王海红 ;
郭城 .
AppliedMathematicsandMechanics(EnglishEdition), 2008, (09) :1203-1214
[43]   Superconvergence analysis for nonlinear parabolic equation with EQ1rot nonconforming finite element [J].
Shi, Dongyang ;
Wang, Junjun ;
Yan, Fengna .
COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (01) :307-327
[44]   Convergence and superconvergence analysis for nonlinear delay reaction-diffusion system with nonconforming finite element [J].
Peng, Shanshan ;
Li, Meng ;
Zhao, Yanmin ;
Wang, Fenling ;
Shi, Yanhua .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2023, 39 (01) :716-743
[45]   Convergence and Superconvergence Analysis of a Nonconforming Finite Element Variable-Time-Step BDF2 Implicit Scheme for Linear Reaction-Diffusion Equations [J].
Pei, Lifang ;
Wei, Yifan ;
Zhang, Chaofeng ;
Zhang, Jiwei .
JOURNAL OF SCIENTIFIC COMPUTING, 2024, 98 (03)
[46]   Superconvergence analysis of a conservative mixed finite element method for the nonlinear Klein-Gordon-Schrodinger equations [J].
Shi, Dongyang ;
Zhang, Houchao .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2023, 39 (04) :2909-2934
[47]   Convergence and Superconvergence Analysis of a Nonconforming Finite Element Variable-Time-Step BDF2 Implicit Scheme for Linear Reaction-Diffusion Equations [J].
Lifang Pei ;
Yifan Wei ;
Chaofeng Zhang ;
Jiwei Zhang .
Journal of Scientific Computing, 2024, 98
[48]   Low order Crouzeix-Raviart type nonconforming finite element methods for the 3D time-dependent Maxwell's equations [J].
Shi, Dongyang ;
Pei, Lifang .
APPLIED MATHEMATICS AND COMPUTATION, 2009, 211 (01) :1-9
[49]   A posteriori and superconvergence error analysis for finite element approximation of the Steklov eigenvalue problem [J].
Xiong, Chunguang ;
Xie, Manting ;
Luo, Fusheng ;
Su, Hongling .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 144 :90-99
[50]   Superconvergence analysis for time-domain Maxwell's equations in a Havriliak-Negami dispersive medium [J].
Liu, Nuodi ;
Chen, Yanping ;
Zhou, Jianwei ;
Huang, Yunqing .
APPLIED MATHEMATICS LETTERS, 2023, 145