Generalized Dichotomies and Hyers–Ulam Stability

被引:0
作者
Davor Dragičević
机构
[1] University of Rijeka,Faculty of Mathematics
来源
Results in Mathematics | 2024年 / 79卷
关键词
Hyers–Ulam stability; generalized dichotomies; 34D10;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a semilinear and nonautonomous differential equation 1x′=A(t)x+f(t,x)t≥0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} x'=A(t)x+f(t,x) \quad t\ge 0, \end{aligned}$$\end{document}acting on an arbitrary Banach space X. Provided that the linear part x′=A(t)x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x'=A(t)x$$\end{document} exhibits a very general form of dichotomic behaviour and that the nonlinear term f is Lipschitz in the second variable (with a suitable Lipshitz constant), we prove that (1) admits two different forms of a generalized Hyers–Ulam stability. Moreover, we obtain the converse result which shows that under suitable additional assumptions, the presence of these two forms of a generalized Hyers–Ulam stability for the linear equation x′=A(t)x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x'=A(t)x$$\end{document} implies that it exhibits this general dichotomic behaviour.
引用
收藏
相关论文
共 41 条
  • [1] Backes L(2021)A general approach to nonautonomous shadowing for nonlinear dynamics Bull. Sci. Math. 170 102996-884
  • [2] Dragičević D(2021)Shadowing for infinite dimensional dynamics and exponential trichotomies Proc. Roy. Soc. Edinburgh Sect. A 151 863-1752
  • [3] Backes L(2023)Conditional lipschitz shadowing for ordinary differential equations J. Dyn. Diff. Equat. 423 1738-308
  • [4] Dragičević D(2015)Hyers–Ulam stability and discrete dichotomy J. Math. Anal. Appl. 63 275-90
  • [5] Backes L(2012)Stable manifolds for non-autonomous equations with nonuniform polynomial dichotomies Q. J. Math. 75 78-1158
  • [6] Dragičević D(2012)Nonuniform Nonlinear Anal. 25 1139-816
  • [7] Onitsuka M(2013)-dichotomies and local dynamics of difference equations J. Dyn. Diff. Equat. 461 796-2188
  • [8] Pituk M(2018)Generalized nonuniform dichotomies and local stable manifolds J. Math. Anal. Appl. 150 2175-934
  • [9] Barbu D(2020)Expansivity and shadowing in linear dynamics Proc. R. Soc. Edinburgh Sect. A 140 908-1336
  • [10] Buşe C(2016)Hyers-Ulam stability for equations with differences and differential equations with time-dependent and periodic coefficients Bull. Sci. Math. 19 1321-680