Nonvanishing of Dirichlet L-functions, II

被引:0
作者
Rizwanur Khan
Djordje Milićević
Hieu T. Ngo
机构
[1] University of Mississippi,Mathematics Department
[2] Bryn Mawr College,Department of Mathematics
[3] Max-Planck-Institut für Mathematik,undefined
[4] Vietnam Institute for Advanced Study in Mathematics,undefined
来源
Mathematische Zeitschrift | 2022年 / 300卷
关键词
-Functions; Dirichlet characters; Nonvanishing; Mollifier; Kloosterman sums; 11M20;
D O I
暂无
中图分类号
学科分类号
摘要
We show that for at least 513\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{5}{13}$$\end{document} of the primitive Dirichlet characters χ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi $$\end{document} of large prime modulus, the central value L(12,χ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L(\frac{1}{2},\chi )$$\end{document} does not vanish, improving on the previous best known result of 38\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{3}{8}$$\end{document}.
引用
收藏
页码:1603 / 1613
页数:10
相关论文
共 12 条
[11]  
VanderKam J(undefined)-functions at the central point undefined undefined undefined-undefined
[12]  
Pratt K(undefined)undefined undefined undefined undefined-undefined