Nonvanishing of Dirichlet L-functions, II

被引:0
作者
Rizwanur Khan
Djordje Milićević
Hieu T. Ngo
机构
[1] University of Mississippi,Mathematics Department
[2] Bryn Mawr College,Department of Mathematics
[3] Max-Planck-Institut für Mathematik,undefined
[4] Vietnam Institute for Advanced Study in Mathematics,undefined
来源
Mathematische Zeitschrift | 2022年 / 300卷
关键词
-Functions; Dirichlet characters; Nonvanishing; Mollifier; Kloosterman sums; 11M20;
D O I
暂无
中图分类号
学科分类号
摘要
We show that for at least 513\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{5}{13}$$\end{document} of the primitive Dirichlet characters χ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi $$\end{document} of large prime modulus, the central value L(12,χ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L(\frac{1}{2},\chi )$$\end{document} does not vanish, improving on the previous best known result of 38\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{3}{8}$$\end{document}.
引用
收藏
页码:1603 / 1613
页数:10
相关论文
共 12 条
[1]  
Balasubramanian R(1992)Zeros of Dirichlet Ann. Sci. École Norm. Sup. (4) 25 567-617
[2]  
Murty VK(2012)-functions Int. J. Number Theory 8 1855-1881
[3]  
Bui HM(2014)Non-vanishing of Dirichlet Comment. Math. Helv. 89 979-1014
[4]  
Fouvry É(2016)-functions at the central point Algebra Number Theory 10 2081-2091
[5]  
Ganguly S(2000)Gaussian distribution for the divisor function and Hecke eigenvalues in arithmetic progressions J. Number Theory 81 130-148
[6]  
Kowalski E(2019)Nonvanishing of Dirichlet Algebra Number Theory 13 227-249
[7]  
Michel P(undefined)-functions undefined undefined undefined-undefined
[8]  
Khan R(undefined)Non-vanishing of high derivatives of Dirichlet undefined undefined undefined-undefined
[9]  
Ngo HT(undefined)-functions at the central point undefined undefined undefined-undefined
[10]  
Michel P(undefined)Average nonvanishing of Dirichlet undefined undefined undefined-undefined