Embedding Free Burnside Groups in Finitely Presented Groups

被引:0
作者
S. V. Ivanov
机构
[1] University of Illinois Urbana,Department of Mathematics
来源
Geometriae Dedicata | 2005年 / 111卷
关键词
finitely presented groups; amenable groups; free Burnside groups; primary: 20E06; 20F05; 20F06; 20F50; secondary: 43A07; 20F38;
D O I
暂无
中图分类号
学科分类号
摘要
We construct an embedding of a free Burnside group B(m,n) of odd exponent n > 248 and rank m >1 in a finitely presented group with some special properties. The main application of this embedding is an easy construction of finitely presented nonamenable groups without noncyclic free subgroups (which provides a new finitely presented counterexample to the von Neumann problem on amenable groups). As another application, we construct weakly finitely presented groups of odd exponent n ≫ 1 which are not locally finite.
引用
收藏
页码:87 / 105
页数:18
相关论文
共 28 条
  • [1] Von Neumann J.(1929)Zur allgemeinen theorie des masses Fund. Math. 13 73-116
  • [2] Banach S.(1924)Sur la décomposition des ensembles de points en parties respectivement congruentes Fund. Math. 6 244-277
  • [3] Tarski A.(2001)Non-amenable finitely presented torsion-by-cyclic groups Electron. Res. Announc. Amer. Math. Soc. 7 63-71
  • [4] Ol’shanskii A. Yu.(1957)Amenable semigroups Illinois J. Math. 1 509-544
  • [5] Sapir M. V.(1960)Zur theorie der messbaren gruppen Math. Z. 74 325-366
  • [6] Day M. M.(1980)On the question of the existence of an invariant mean on a group Uspekhi Mat. Nauk 35 199-200
  • [7] Specht W.(1972)Free subgroups in linear groups J. Algebra 20 250-270
  • [8] Ol’shanskii A. Yu.(1982)Random walks on free periodic groups Izv. Akad. Nauk SSSR, Ser. Mat. 46 1139-1149
  • [9] Tits J.(1982)Cogrowth and amenability of discrete groups J. Funct. Anal. 48 301-309
  • [10] Adian S. I.(2002)Non-amenable finitely presented torsion-by-cyclic groups Publ. Math. IHES 96 43-169