Sobolev Mapping of Some Holomorphic Projections

被引:0
作者
L. D. Edholm
J. D. McNeal
机构
[1] University of Michigan,Department of Mathematics
[2] The Ohio State University,Department of Mathematics
来源
The Journal of Geometric Analysis | 2020年 / 30卷
关键词
Bergman projection; Sobolev spaces; Hartogs triangles; 32A36; 32A25; 32W05;
D O I
暂无
中图分类号
学科分类号
摘要
Sobolev irregularity of the Bergman projection on a family of domains containing the Hartogs triangle is shown. On the Hartogs triangle itself, a sub-Bergman projection is shown to satisfy better Sobolev norm estimates than its Bergman projection.
引用
收藏
页码:1293 / 1311
页数:18
相关论文
共 48 条
  • [1] Barrett D(2012)Irregularity of the Bergman projection on worm domains in Michigan Math. J. 61 187-198
  • [2] Şahutoğlu S(1984)Irregularity of the Bergman projection on a smooth bounded domain in Ann. Math. 119 431-436
  • [3] Barrett DE(1986)Regularity of the Bergman projection and local geometry of domains Duke Math. J. 53 333-343
  • [4] Barrett DE(1992)Behavior of the Bergman projection on the Diederich-Fornæss worm Acta Math. 168 1-10
  • [5] Barrett DE(1980)A simplification and extension of Fefferman’s theorem on biholomorphic mappings Invent. Math. 57 283-289
  • [6] Bell S(1981)Biholomorphic mappings and the Ann. Math. 114 103-113
  • [7] Ligocka E(1987)-problem Trans. Am. Math. Soc. 300 109-132
  • [8] Bell SR(1991)The Szegő projection: Sobolev estimates in regular domains Math. Z. 206 81-88
  • [9] Boas HP(2019)Sobolev estimates for the Adv. Math. 341 616-656
  • [10] Boas HP(2016)-Neumann operator on domains in Proc. Am. Math. Soc. 144 1643-1653