Physiological and biochemical responses to drought stress in cultivated and Tibetan wild barley

被引:0
|
作者
Mian Zhang
Zhu-Qun Jin
Jing Zhao
Guoping Zhang
Feibo Wu
机构
[1] Zhejiang University,Institute of Crop Science, Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus
[2] Cixi Research Institute of Agricultural Science,undefined
来源
Plant Growth Regulation | 2015年 / 75卷
关键词
Tibet annual wild barley; Drought stress; Genotype difference; Water metabolism; Endogenous ABA; Reactive oxygen species (ROS) metabolism;
D O I
暂无
中图分类号
学科分类号
摘要
Greenhouse pot experiments were conducted to investigate genotypic differences in response to drought stress between Tibetan wild barley genotypes (XZ5 and XZ150, drought-tolerant; XZ54 and XZ147, drought-sensitive) and cv ZAU3. Drought stress of 4 % soil moisture content (SMC) significantly decreased water potential (WP) and osmotic potential (OP), while increased water saturation deficit (WSD) and the bound water content (BWC) in leaves, with the least decrease/increase in XZ5, which recorded the highest levels in WP and OP but the lowest in WSD and BWC under 4 % SMC. Under 15 % SMC, when compared with control, XZ5 and XZ150 had more elevation in soluble sugar content relative to the other 3 genotypes, while XZ5 had the least increase in soluble protein. Under 4 % SMC, endogenous ABA content increased more in XZ5 and XZ150 than in the other three genotypes, but proline content increased least in XZ5. After rewatering, the transpiration rate increased in sensitive genotypes but decreased in tolerant genotypes. The less elevated MDA accumulation was observed in XZ5 and XZ150 with higher POD and CAT activities under 15 and 4 % SMC than in the other three genotypes. Drought stress of 4 % SMC significantly up-regulated the expression levels of CAT1 and Cu/ZnSOD in XZ5 and MnSOD in XZ150.Our results indicated that drought tolerance of wild barley XZ5 is mainly associated with the osmo-regulation of soluble sugar and stomatal regulation of ABA. This mechanism could be applied to improve the drought tolerance of cultivated barley and the further marker-assisted breeding.
引用
收藏
页码:567 / 574
页数:7
相关论文
共 50 条
  • [41] Salinity and drought stress in plants: understanding physiological, biochemical and molecular responses
    Waseem, Muhammad
    Liu, Pingwu
    Aslam, Mehtab Muhammad
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [42] Physiological and Biochemical Responses of Two Herbaceous Peony Cultivars to Drought Stress
    Wang, Qi
    Zhao, Rui
    Chen, Qihang
    Teixeira da Silva, Jaime A.
    Chen, Liqi
    Yu, Xiaonan
    HORTSCIENCE, 2019, 54 (03) : 492 - 498
  • [43] An integrated overview of physiological and biochemical responses of Celtis australis to drought stress
    Brunetti, Cecilia
    Tattini, Massimiliano
    Guidi, Lucia
    Velikova, Violeta
    Ferrini, Francesco
    Fini, Alessio
    URBAN FORESTRY & URBAN GREENING, 2019, 46
  • [44] Genetic diversity of wild and cultivated barley genotypes under drought stress using RAPD markers
    Nazari, L.
    Pakniyat, H.
    Biotechnology, 2008, 7 (04) : 745 - 750
  • [45] Morphological Structure and Physiological and Biochemical Responses to Drought Stress of Iris japonica
    Yu, Xiaofang
    Liu, Yujia
    Cao, Panpan
    Zeng, Xiaoxuan
    Xu, Bin
    Luo, Fuwen
    Yang, Xuan
    Wang, Xiantong
    Wang, Xiaoyu
    Xiao, Xue
    Yang, Lijuan
    Lei, Ting
    PLANTS-BASEL, 2023, 12 (21):
  • [46] Study of Bread Wheat Genotype Physiological and Biochemical Responses to Drought Stress
    Gholamin, Roza
    Khayatnezhad, Majid
    HELIX, 2020, 10 (05): : 87 - 92
  • [47] Genome-wide investigation on transcriptional responses to drought stress in wild and cultivated rice
    Geng, Mu-Fan
    Wang, Xiu-Hua
    Wang, Mei-Xia
    Cai, Zhe
    Meng, Qing-Lin
    Wang, Xin
    Zhou, Lian
    Han, Jing-Dan
    Li, Ji-Long
    Zhang, Fu-Min
    Guo, Ya-Long
    Ge, Song
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2021, 189
  • [48] Physiological and Transcriptome Indicators of Salt Tolerance in Wild and Cultivated Barley
    Gharaghanipor, Narges
    Arzani, Ahmad
    Rahimmalek, Mehdi
    Ravash, Rudabeh
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [49] Physiological and Biochemical Responses to Heat Stress on Barley Seedlings and Their Impact on Growth and Yield
    Abdel-Hamid, Amal M. E.
    EGYPTIAN JOURNAL OF BOTANY, 2016, 56 (01): : 319 - 334
  • [50] Physiological responses to drought stress in wild relatives of wheat: implications for wheat improvement
    Alireza Pour-Aboughadareh
    Jafar Ahmadi
    Ali Ashraf Mehrabi
    Alireza Etminan
    Mohammad Moghaddam
    Kadambot H. M. Siddique
    Acta Physiologiae Plantarum, 2017, 39