Physiological and biochemical responses to drought stress in cultivated and Tibetan wild barley

被引:0
|
作者
Mian Zhang
Zhu-Qun Jin
Jing Zhao
Guoping Zhang
Feibo Wu
机构
[1] Zhejiang University,Institute of Crop Science, Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus
[2] Cixi Research Institute of Agricultural Science,undefined
来源
Plant Growth Regulation | 2015年 / 75卷
关键词
Tibet annual wild barley; Drought stress; Genotype difference; Water metabolism; Endogenous ABA; Reactive oxygen species (ROS) metabolism;
D O I
暂无
中图分类号
学科分类号
摘要
Greenhouse pot experiments were conducted to investigate genotypic differences in response to drought stress between Tibetan wild barley genotypes (XZ5 and XZ150, drought-tolerant; XZ54 and XZ147, drought-sensitive) and cv ZAU3. Drought stress of 4 % soil moisture content (SMC) significantly decreased water potential (WP) and osmotic potential (OP), while increased water saturation deficit (WSD) and the bound water content (BWC) in leaves, with the least decrease/increase in XZ5, which recorded the highest levels in WP and OP but the lowest in WSD and BWC under 4 % SMC. Under 15 % SMC, when compared with control, XZ5 and XZ150 had more elevation in soluble sugar content relative to the other 3 genotypes, while XZ5 had the least increase in soluble protein. Under 4 % SMC, endogenous ABA content increased more in XZ5 and XZ150 than in the other three genotypes, but proline content increased least in XZ5. After rewatering, the transpiration rate increased in sensitive genotypes but decreased in tolerant genotypes. The less elevated MDA accumulation was observed in XZ5 and XZ150 with higher POD and CAT activities under 15 and 4 % SMC than in the other three genotypes. Drought stress of 4 % SMC significantly up-regulated the expression levels of CAT1 and Cu/ZnSOD in XZ5 and MnSOD in XZ150.Our results indicated that drought tolerance of wild barley XZ5 is mainly associated with the osmo-regulation of soluble sugar and stomatal regulation of ABA. This mechanism could be applied to improve the drought tolerance of cultivated barley and the further marker-assisted breeding.
引用
收藏
页码:567 / 574
页数:7
相关论文
共 50 条
  • [1] Physiological and biochemical responses to drought stress in cultivated and Tibetan wild barley
    Zhang, Mian
    Jin, Zhu-Qun
    Zhao, Jing
    Zhang, Guoping
    Wu, Feibo
    PLANT GROWTH REGULATION, 2015, 75 (02) : 567 - 574
  • [2] Ionomic and physiological responses to low nitrogen stress in Tibetan wild and cultivated barley
    Quan, Xiaoyan
    Zeng, Jianbin
    Han, Zhigang
    Zhang, Guoping
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2017, 111 : 257 - 265
  • [3] The changes in physiological and biochemical traits of Tibetan wild and cultivated barley in response to low phosphorus stress
    Nadira, Umme Aktari
    Ahmed, Imrul Mosaddek
    Zeng, Jianbin
    Bibi, Noreen
    Cai, Shengguan
    Wu, Feibo
    Zhang, Guoping
    SOIL SCIENCE AND PLANT NUTRITION, 2014, 60 (06) : 832 - 842
  • [4] Difference in physiological and biochemical responses to salt stress between Tibetan wild and cultivated barleys
    Jabeen, Zahra
    Hussain, Nazim
    Wu, Dezhi
    Han, Yong
    Shamsi, Imran
    Wu, Feibo
    Zhang, Guoping
    ACTA PHYSIOLOGIAE PLANTARUM, 2015, 37 (09)
  • [5] Difference in physiological and biochemical responses to salt stress between Tibetan wild and cultivated barleys
    Zahra Jabeen
    Nazim Hussain
    Dezhi Wu
    Yong Han
    Imran Shamsi
    Feibo Wu
    Guoping Zhang
    Acta Physiologiae Plantarum, 2015, 37
  • [6] Genotype-dependent effects of phosphorus supply on physiological and biochemical responses to Al-stress in cultivated and Tibetan wild barley
    Wang, Runfeng
    Dai, Huaxin
    Shi, Min
    Ahmed, Imrul Mosaddek
    Liu, Wenxing
    Chen, Zhong-Hua
    Zhang, Guoping
    Wu, Feibo
    PLANT GROWTH REGULATION, 2017, 82 (02) : 259 - 270
  • [7] Genotype-dependent effects of phosphorus supply on physiological and biochemical responses to Al-stress in cultivated and Tibetan wild barley
    Runfeng Wang
    Huaxin Dai
    Min Shi
    Imrul Mosaddek Ahmed
    Wenxing Liu
    Zhong-Hua Chen
    Guoping Zhang
    Feibo Wu
    Plant Growth Regulation, 2017, 82 : 259 - 270
  • [8] Genotypic differences in physiological characteristics in the tolerance to drought and salinity combined stress between Tibetan wild and cultivated barley
    Ahmed, Imrul Mosaddek
    Dai, Huaxin
    Zheng, Weite
    Cao, Fangbin
    Zhang, Guoping
    Sun, Dongfa
    Wu, Feibo
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2013, 63 : 49 - 60
  • [9] Physiological and antioxidant responses of cultivated and wild barley under salt stress
    Jabeen, Zahra
    Hussain, Nazim
    Irshad, Faiza
    Zeng, Jianbin
    Tahir, Ayesha
    Zhang, Guoping
    PLANT SOIL AND ENVIRONMENT, 2020, 66 (07) : 334 - 344
  • [10] Growth and physiological characterization of low nitrogen responses in Tibetan wild barley (Hordeum spontaneum) and cultivated barley (Hordeum vulgare)
    Shah, Jawad Munawar
    Asgher, Zeshan
    Zeng, Jianbin
    Quan, Xiaoyan
    Ali, Essa
    Shamsi, Imran Haider
    Zhang, Guoping
    JOURNAL OF PLANT NUTRITION, 2017, 40 (06) : 861 - 868