The Ellipse Law: Kirchhoff Meets Dislocations

被引:0
作者
J. A. Carrillo
J. Mateu
M. G. Mora
L. Rondi
L. Scardia
J. Verdera
机构
[1] Imperial College London,Department of Mathematics
[2] Universitat Autònoma de Barcelona,Department de Matemàtiques
[3] Università di Pavia,Dipartimento di Matematica
[4] Università di Milano,Dipartimento di Matematica
[5] Heriot-Watt University,Department of Mathematics
来源
Communications in Mathematical Physics | 2020年 / 373卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider a nonlocal energy Iα whose kernel is obtained by adding to the Coulomb potential an anisotropic term weighted by a parameter α∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\alpha \in \mathbb{R}}$$\end{document}. The case α = 0 corresponds to purely logarithmic interactions, minimised by the circle law; α = 1 corresponds to the energy of interacting dislocations, minimised by the semi-circle law. We show that for α∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\alpha \in (0, 1)}$$\end{document} the minimiser is the normalised characteristic function of the domain enclosed by the ellipse of semi-axes 1-α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sqrt{1-\alpha}}$$\end{document} and 1+α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sqrt{1+\alpha}}$$\end{document}. This result is one of the very few examples where the minimiser of a nonlocal anisotropic energy is explicitly computed. For the proof we borrow techniques from fluid dynamics, in particular those related to Kirchhoff’s celebrated result that domains enclosed by ellipses are rotating vortex patches, called Kirchhoff ellipses.
引用
收藏
页码:507 / 524
页数:17
相关论文
共 88 条
[1]  
Albi G.(2014)Stability analysis of flock and mill rings for second order models in swarming SIAM J. Appl. Math. 74 794-818
[2]  
Balagué D.(2013)Dimensionality of local minimizers of the interaction energy Arch. Ration. Mech. Anal. 209 1055-1088
[3]  
Carrillo J.A.(2015)Equilibrium measures for a class of potentials with discrete rotational symmetries Constr. Approx. 42 399-424
[4]  
von Brecht J.(2015)Ring patterns and their bifurcations in a nonlocal model of biological swarms Commun. Math. Sci. 13 955-985
[5]  
Balagué D.(2012)AGGREGATION AND SPREADING VIA THE NEWTONIAN POTENTIAL: THE DYNAMICS OF PATCH SOLUTIONS Mathematical Models and Methods in Applied Sciences 22 1140005-160
[6]  
Carrillo J.A.(2014)From Nash to Cournot–Nash equilibria via the Monge–Kantorovich problem Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 372 20130398-1321
[7]  
Laurent T.(2011)Random matrix model with external source and a constrained vector equilibrium problem Comm. Pure Appl. Math. 64 116-844
[8]  
Raoul G.(2012)Orthogonal polynomials in the normal matrix model with a cubic potential Adv. Math. 230 1272-16
[9]  
Balogh F.(1974)The smoothness of solutions to nonlinear variational inequalities Indiana Univ. Math. J. 23 831-402
[10]  
Merzi D.(1982)Motions of vortex patches Lett. Math. Phys. 6 1-421