Topological and Invariance Entropy for Infinite-Dimensional Linear Systems

被引:0
作者
Anne-Marie Hoock
机构
[1] Universität Augsburg,Institut für Mathematik
来源
Journal of Dynamical and Control Systems | 2014年 / 20卷
关键词
Infinite-dimensional linear systems; Strongly continuous semigroups; Topological entropy; Invariance entropy; Delay equations; 93C05; 37B40; 94A17;
D O I
暂无
中图分类号
学科分类号
摘要
For linear (control) systems on infinite-dimensional state spaces with finite-dimensional unstable subspace, this paper introduces the concepts of topological entropy and invariance entropy. For linear dynamical systems on Banach spaces, described by a strongly continuous semigroup, the topological entropy is given by the sum of the real parts of the unstable eigenvalues of the infinitesimal generator. An application is provided by computing the topological entropy of delay equations and of a parabolic partial differential equation. Furthermore, the invariance entropy for infinite-dimensional linear control systems is equal to the topological entropy of the homogeneous equation and so it is also described by the eigenvalues of the infinitesimal generator.
引用
收藏
页码:19 / 31
页数:12
相关论文
共 21 条
[1]  
Bowen R(1971)Entropy for group endomorphisms and homogeneous spaces Trans Am Math Soc 153 401-14
[2]  
Colonius F(2009)Invariance entropy for control systems SIAM J Control Optim 48 1701-721
[3]  
Kawan C(2011)Invariance entropy for outputs Math Control Signals Syst 22 203-27
[4]  
Colonius F(1996)On the LambertW-function Adv Comput Math 5 329-59
[5]  
Kawan C(2007)The LambertWfunction and the spectrum of some multidimensional time-delay systems Automatica 43 2124-128
[6]  
Corless RM(2011)Upper and lower estimates for invariance entropy Discret Contin Dyn Syst 30 169-86
[7]  
Gonnet GH(2011)Invariance entropy of control sets SIAM J Control Optim 49 732-51
[8]  
Hare DEG(2011)Lower bounds for the strict invariance entropy Nonlinearity 24 1910-936
[9]  
Jeffrey DJ(2004)Topological feedback entropy and nonlinear stabilization IEEE Trans Autom Control 49 1585-97
[10]  
Damm T(1991)Local and global Lyapunov exponents J Dyn Diff Equat 3 133-77