Quantum integer-valued polynomials

被引:0
|
作者
Nate Harman
Sam Hopkins
机构
[1] MIT,Department of Mathematics
来源
Journal of Algebraic Combinatorics | 2017年 / 45卷
关键词
-analogs; Integer-valued polynomials; Quantum integers; Combinatorial identities;
D O I
暂无
中图分类号
学科分类号
摘要
We define a q-deformation of the classical ring of integer-valued polynomials which we call the ring of quantum integer-valued polynomials. We show that this ring has a remarkable combinatorial structure and enjoys many positivity properties: For instance, the structure constants for this ring with respect to its basis of q-binomial coefficient polynomials belong to N[q]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {N}[q]$$\end{document}. We then classify all maps from this ring into a field, extending a known classification in the classical case where q=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q=1$$\end{document}.
引用
收藏
页码:601 / 628
页数:27
相关论文
共 50 条