A Note on the Heat Kernel for the Rescaled Harmonic Oscillator from Two Step Nilpotent Lie Groups

被引:0
作者
Zhi Peng Yang
机构
[1] Yunnan Normal University,Department of Mathematics
来源
Acta Mathematica Sinica, English Series | 2022年 / 38卷
关键词
Sub-Laplacian; heat kernel; nilpotent Lie groups; 22E25; 43A75; 35A08;
D O I
暂无
中图分类号
学科分类号
摘要
In this note, we use Schrödinger representations and the Fourier transform on two step nilpotent Lie groups to compute the explicit formula of the sub-Laplacian operator and its symbol, which is associated with the rescaled harmonic oscillator. Then we can give an explicit formula for the heat kernel of the rescaled harmonic oscillator for the singularity at the origin. Our results are useful for the general two step nilpotent Lie groups, including the Heisenberg group and H-type group.
引用
收藏
页码:1597 / 1611
页数:14
相关论文
共 28 条
[1]  
Bahouri H(2012)Phase-space analysis and pseudodifferential calculus on the Heisenberg group Astérisque 342 vi+127-36
[2]  
Fermanian-Kammerer C(2021)The heat kernel of sub-Laplace operator on nilpotent Lie groups of step two Appl. Anal. 100 17-1882
[3]  
Gallagher I(2019)The Laguerre calculus on the nilpotent Lie groups of step two J. Math. Anal. Appl. 475 1855-818
[4]  
Chang D(2005)A note on Hermite and subelliptic operators Acta Math. Sin. (Engl. Ser.) 21 803-207
[5]  
Kang Q(1975)Subelliptic estimates and function spaces on nilpotent Lie groups Ark. Mat. 13 161-522
[6]  
Wang W(1974)Estimates for the Comm. Pure Appl. Math. 27 429-153
[7]  
Chang D(1977) complex and analysis on the Heisenberg group Acta Math. 139 95-173
[8]  
Markina I(1976)Principe de moindre action, propagation de la chaleur et estimées sous elliptiques sur certains groupes nilpotents Studia Math. 56 165-503
[9]  
Wang W(2019)The distribution of energy in the Brownian motion in the Gaussian field and analytic-hypoellipticity of certain subelliptic operators on the Heisenberg group Comm. Partial Differential Equations 44 467-49
[10]  
Chang D(1996)Revisiting the heat kernel on isotropic and nonisotropic Heisenberg groups Ann. of Math.(2) 143 1-318