On automorphisms of distance-regular graphs with intersection arrays {2r + 1, 2r − 2, 1; 1, 2, 2r + 1}

被引:0
|
作者
I. N. Belousov
A. A. Makhnev
机构
[1] Ural Branch of the Russian Academy of Sciences,Krasovskii Institute of Mathematics and Mechanics
[2] Ural Federal University,undefined
来源
Proceedings of the Steklov Institute of Mathematics | 2017年 / 296卷
关键词
distance-regular graph; graph automorphism;
D O I
暂无
中图分类号
学科分类号
摘要
Let Γ be an antipodal graph with intersection array {2r+1, 2r−2, 1; 1, 2, 2r+1}, where 2r(r + 1) ≤ 4096. If 2r + 1 is a prime power, then Mathon’s scheme provides the existence of an arc-transitive graph with this intersection array. Note that 2r + 1 is not a prime power only for r ∈ {7, 17, 19, 22, 25, 27, 31, 32, 37, 38, 42, 43}. We study automorphisms of hypothetical distance-regular graphs with the specified values of r. The cases r ∈ {7, 17, 19} were considered earlier. We prove that, if Γ is a vertex-symmetric graph with intersection array {2r + 1, 2r − 2, 1; 1, 2, 2r +1}, 2r + 1 is not a prime power, and r ≤ 43, then r = 25, 27, or 31.
引用
收藏
页码:85 / 94
页数:9
相关论文
共 50 条
  • [1] On automorphisms of distance-regular graphs with intersection arrays {2r
    Belousov, I. N.
    Makhnev, A. A.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2016, 22 (02): : 28 - 37
  • [2] On Automorphisms of Distance-Regular Graphs with Intersection Arrays {2r+1, 2r-2, 1; 1, 2, 2r+1}
    Belousov, I. N.
    Makhnev, A. A.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2017, 296 (01) : S85 - S94
  • [3] A short synthesis of (1S,2R)- and (1R,2R)-[1-2H]-glycerols
    Tetrahedron Asymmetry, 14 (2325):
  • [4] A short synthesis of (1S,2R) and (1R,2R)-[1-H-2]-glycerols
    Nieschalk, J
    OHagan, D
    TETRAHEDRON-ASYMMETRY, 1997, 8 (14) : 2325 - 2330
  • [5] 1R,2R)-Diaminocyclohexane
    Tokarz, Pawel
    SYNLETT, 2013, 24 (12) : 1597 - 1598
  • [6] Synthesis of enantiomeric diethyl (1R,2R)- and (1S,2R)-1,2,3-trihydroxypropylphosphonates
    Wróblewski, AE
    Balcerzak, KB
    TETRAHEDRON, 1998, 54 (24) : 6833 - 6840
  • [7] A simple proof of Slater's transformations for bilateral series rψr, 2rψ2r and 2r-1ψ2r-1
    Mimachi, Katsuhisa
    RAMANUJAN JOURNAL, 2024, 63 (04): : 1199 - 1223
  • [8] 2R or not 2R is not the question anymore
    Van de Peer, Yves
    Maere, Steven
    Meyer, Axel
    NATURE REVIEWS GENETICS, 2010, 11 (02) : 166 - 166
  • [9] 2R or not 2R is not the question anymore
    Yves Van de Peer
    Steven Maere
    Axel Meyer
    Nature Reviews Genetics, 2010, 11 : 166 - 166
  • [10] ENANTIOSPECIFIC SYNTHESES OF VALIOLAMINE AND ITS (1R), (2R), (1R,2R) DIASTEREOMERS FROM (-)-QUINIC ACID
    SHING, TKM
    WAN, LH
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION IN ENGLISH, 1995, 34 (15): : 1643 - 1645