Supersolvability of finite factorizable groups with cyclic Sylow subgroups in the factors

被引:0
作者
V. S. Monakhov
I. K. Chirik
机构
[1] Gomel State University,
[2] Gomel Engineering Institute of the Ministry for Emergency Situations,undefined
来源
Mathematical Notes | 2014年 / 96卷
关键词
finite group; solvability; supersolvability; Sylow subgroup; cyclic subgroup;
D O I
暂无
中图分类号
学科分类号
摘要
Let p be a prime. Under certain additional conditions, we establish the p-supersolvability of a finite p-solvable group G = AB with cyclic Sylow p-subgroups in A and B. In particular, we prove that a finite group G = AB is supersolvable provided that all Sylow subgroups in A and B are cyclic and either G is 2-closed or A and B are maximal subgroups.
引用
收藏
页码:983 / 991
页数:8
相关论文
共 10 条
[1]  
Berkovich Ya G(1967)On solvable groups of finite order Mat. Sb. 74 75-92
[2]  
Asaad M(2012)Some sufficient conditions for a finite group to be supersolvable Acta Math. Hungar. 135 168-173
[3]  
Monakhov V S(2001)On the partial supersolvability of a finite factorable group Dokl. Nats. Akad. Nauk Belarusi 45 32-36
[4]  
Monakhov V S(1969)On a class of solvable groups Sibirsk. Mat. Zh. 10 712-715
[5]  
Chertok V D(2001)Maximal and Sylow subgroups of solvable finite groups Mat. Zametki 70 603-612
[6]  
Monakhov V S(2011)On finite soluble groups of fixed rank Sibirsk. Mat. Zh. 52 1123-1137
[7]  
Gribovskaya E E(1986)Groups that can be represented as a product of two solvable subgroups Comm. Algebra 14 1001-1066
[8]  
Monakhov V S(undefined)undefined undefined undefined undefined-undefined
[9]  
Trofimuk A A(undefined)undefined undefined undefined undefined-undefined
[10]  
Kazarin L S(undefined)undefined undefined undefined undefined-undefined