Parsimony as the ultimate regularizer for physics-informed machine learning

被引:0
|
作者
J. Nathan Kutz
Steven L. Brunton
机构
[1] University of Washington,Department of Applied Mathematics
[2] University of Washington,Department of Mechanical Engineering
来源
Nonlinear Dynamics | 2022年 / 107卷
关键词
Machine learning; Dynamical systems; Parsimony; Physics;
D O I
暂无
中图分类号
学科分类号
摘要
Data-driven modeling continues to be enabled by modern machine learning algorithms and deep learning architectures. The goals of such efforts revolve around the generation of models for prediction, characterization, and control of complex systems. In the context of physics and engineering, extrapolation and generalization are critical aspects of model discovery that are empowered by various aspects of parsimony. Parsimony can be encoded (i) in a low-dimensional coordinate system, (ii) in the representation of governing equations, or (iii) in the representation of parametric dependencies. In what follows, we illustrate techniques that leverage parsimony in deep learning to build physics-based models, culminating in a deep learning architecture that is parsimonious in coordinates and also in representing the dynamics and their parametric dependence through a simple normal form. Ultimately, we argue that promoting parsimony in machine learning results in more physical models, i.e., models that generalize and are parametrically represented by governing equations.
引用
收藏
页码:1801 / 1817
页数:16
相关论文
共 50 条
  • [1] Parsimony as the ultimate regularizer for physics-informed machine learning
    Kutz, J. Nathan
    Brunton, Steven L.
    NONLINEAR DYNAMICS, 2022, 107 (03) : 1801 - 1817
  • [2] Physics-informed machine learning
    George Em Karniadakis
    Ioannis G. Kevrekidis
    Lu Lu
    Paris Perdikaris
    Sifan Wang
    Liu Yang
    Nature Reviews Physics, 2021, 3 : 422 - 440
  • [3] Physics-informed machine learning
    Karniadakis, George Em
    Kevrekidis, Ioannis G.
    Lu, Lu
    Perdikaris, Paris
    Wang, Sifan
    Yang, Liu
    NATURE REVIEWS PHYSICS, 2021, 3 (06) : 422 - 440
  • [4] Separable physics-informed DeepONet: Breaking the curse of dimensionality in physics-informed machine learning
    Mandl, Luis
    Goswami, Somdatta
    Lambers, Lena
    Ricken, Tim
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2025, 434
  • [5] A Taxonomic Survey of Physics-Informed Machine Learning
    Pateras, Joseph
    Rana, Pratip
    Ghosh, Preetam
    APPLIED SCIENCES-BASEL, 2023, 13 (12):
  • [6] Numerical analysis of physics-informed neural networks and related models in physics-informed machine learning
    De Ryck, Tim
    Mishra, Siddhartha
    ACTA NUMERICA, 2024, 33 : 633 - 713
  • [7] Physics-informed machine learning for modeling multidimensional dynamics
    Abbasi, Amirhassan
    Kambali, Prashant N.
    Shahidi, Parham
    Nataraj, C.
    NONLINEAR DYNAMICS, 2024, 112 (24) : 21565 - 21585
  • [8] Physics-Informed Machine Learning for DRAM Error Modeling
    Baseman, Elisabeth
    DeBardeleben, Nathan
    Blanchard, Sean
    Moore, Juston
    Tkachenko, Olena
    Ferreira, Kurt
    Siddiqua, Taniya
    Sridharan, Vilas
    2018 IEEE INTERNATIONAL SYMPOSIUM ON DEFECT AND FAULT TOLERANCE IN VLSI AND NANOTECHNOLOGY SYSTEMS (DFT), 2018,
  • [9] The scaling of physics-informed machine learning with data and dimensions
    Miller S.T.
    Lindner J.F.
    Choudhary A.
    Sinha S.
    Ditto W.L.
    Chaos, Solitons and Fractals: X, 2020, 5
  • [10] Physics-informed Machine Learning for Modeling Turbulence in Supernovae
    Karpov, Platon I.
    Huang, Chengkun
    Sitdikov, Iskandar
    Fryer, Chris L.
    Woosley, Stan
    Pilania, Ghanshyam
    ASTROPHYSICAL JOURNAL, 2022, 940 (01):