Random Walks on a Fractal Solid

被引:0
作者
John J. Kozak
机构
[1] Iowa State University,Department of Chemistry
[2] Ames,undefined
来源
Journal of Statistical Physics | 2000年 / 101卷
关键词
random walks; fractals; fractal dimension; lattices;
D O I
暂无
中图分类号
学科分类号
摘要
It is established that the trapping of a random walker undergoing unbiased, nearest-neighbor displacements on a triangular lattice of Euclidean dimension d=2 is more efficient (i.e., the mean walklength 〈n〉 before trapping of the random walker is shorter) than on a fractal set, the Sierpinski tower, which has a Hausdorff dimension D exactly equal to the Euclidean dimension of the regular lattice. We also explore whether the self similarity in the geometrical structure of the Sierpinski lattice translates into a “self similarity” in diffusional flows, and find that expressions for 〈n〉 having a common analytic form can be obtained for sites that are the first- and second-nearest-neighbors to a vertex trap.
引用
收藏
页码:405 / 414
页数:9
相关论文
共 33 条
[11]  
Garza-Lopez R. A.(1988)undefined Langmuir 4 305-undefined
[12]  
Kozak J. J.(1983)undefined Phys. Rev. B 26 4166-undefined
[13]  
Garza-Lopez R. A.(1964)undefined Proc. Symp. Appl. Math. Am. Math. Soc. 16 193-undefined
[14]  
Kozak J. J.(1965)undefined J. Math. Phys. 6 167-undefined
[15]  
Garza-Lopez R. A.(1969)undefined J. Math. Phys. 10 753-undefined
[16]  
Rudra J. K.(undefined)undefined undefined undefined undefined-undefined
[17]  
Davidson R.(undefined)undefined undefined undefined undefined-undefined
[18]  
Kozak J. J.(undefined)undefined undefined undefined undefined-undefined
[19]  
Kozak J. J.(undefined)undefined undefined undefined undefined-undefined
[20]  
Garza-Lopez R. A.(undefined)undefined undefined undefined undefined-undefined