Random Walks on a Fractal Solid

被引:0
作者
John J. Kozak
机构
[1] Iowa State University,Department of Chemistry
[2] Ames,undefined
来源
Journal of Statistical Physics | 2000年 / 101卷
关键词
random walks; fractals; fractal dimension; lattices;
D O I
暂无
中图分类号
学科分类号
摘要
It is established that the trapping of a random walker undergoing unbiased, nearest-neighbor displacements on a triangular lattice of Euclidean dimension d=2 is more efficient (i.e., the mean walklength 〈n〉 before trapping of the random walker is shorter) than on a fractal set, the Sierpinski tower, which has a Hausdorff dimension D exactly equal to the Euclidean dimension of the regular lattice. We also explore whether the self similarity in the geometrical structure of the Sierpinski lattice translates into a “self similarity” in diffusional flows, and find that expressions for 〈n〉 having a common analytic form can be obtained for sites that are the first- and second-nearest-neighbors to a vertex trap.
引用
收藏
页码:405 / 414
页数:9
相关论文
共 33 条
[1]  
Gefen Y.(1983)undefined Phys. Rev. Lett. 50 77-undefined
[2]  
Aharony A.(1983)undefined Adv. Chem. Phys. 52 363-undefined
[3]  
Alexander S.(1987)undefined Adv. Phys. 36 695-undefined
[4]  
Weiss G.(1990)undefined Phys. Today 43 46-undefined
[5]  
Rubin R. J.(1988)undefined Phys. Lett. A 127 155-undefined
[6]  
Havlin S.(1989)undefined Phys Rev. A 40 7325-undefined
[7]  
Ben-Avraham D.(1990)undefined J. Phys. Chem. 94 8315-undefined
[8]  
Drake J. M.(1997)undefined Chem. Phys. Lett. 275 199-undefined
[9]  
Klafter J.(1999)undefined Chem. Phys. Lett. 306 411-undefined
[10]  
Abowd G. D.(1999)undefined J. Phys. Chem. 103 9200-undefined