Flag-transitive point-primitive automorphism groups of non-symmetric 2-(v, k, 3) designs

被引:0
作者
Hongxue Liang
Shenglin Zhou
机构
[1] South China University of Technology,School of Mathematics
来源
Designs, Codes and Cryptography | 2018年 / 86卷
关键词
Primitive group; Flag-transitive; Non-symmetric design; 05B05; 05B25;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we show that if D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {D}}$$\end{document} is a non-trivial non-symmetric 2-(v, k, 3) design admitting a flag-transitive point-primitive automorphism group G, then G must be an affine or almost simple group.
引用
收藏
页码:1757 / 1766
页数:9
相关论文
共 17 条
[1]  
Bosma W(1997)The magma algebra system I: the user language J. Symb. Comput. 24 235-265
[2]  
Cannon J(1988)Finite linear spaces with flag-transitive groups J. Comb. Theory Ser. A 49 268-293
[3]  
Playoust C(1961)Geometric ABA-groups Ill. J. Math. 5 382-397
[4]  
Buekenhout F(2016)Flag-transitive point-primitive automorphism groups of non-symmetric J. Comb. Des. 24 421-435
[5]  
Delandtsheer A(1988)- J. Aust. Math. Soc. A 44 389-396
[6]  
Doyen J(2005) designs J. Comb. Theory Ser. A 109 135-148
[7]  
Higman DG(2005)On the O’Nan-Scott theorem for finite primitive permutation groups J. Algebra 292 154-183
[8]  
Mclaughlin JE(2013)On primitivity and reduction for flag-transitive symmetric designs J. Comb. Des. 21 127-141
[9]  
Liang H(undefined)The primitive permutation groups of degree less than 2500 undefined undefined undefined-undefined
[10]  
Zhou S(undefined)Flag-transitive point-primitive symmetric undefined undefined undefined-undefined