Non-uniform dependence on initial data for the periodic modified Camassa–Holm equation

被引:1
作者
Yanggeng Fu
Zhengrong Liu
机构
[1] Huaqiao University,School of Mathematical Sciences
[2] South China University of Technology,Department of Mathematics
来源
Nonlinear Differential Equations and Applications NoDEA | 2013年 / 20卷
关键词
35A07; 35B30; 35Q53; Modified Camassa–Holm equation; Periodic Cauchy problem; Non-uniform dependence; Sobolev spaces;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the periodic Cauchy problem for the modified Camassa–Holm equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_t+um_x+2u_xm=0,\quad m=(1-\partial_x^2)^2u$$\end{document}, and show that the solution map is not uniformly continuous in Sobolev spaces \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H^s(\mathbb T)}$$\end{document} for s > 7/2. Our proof is based on the method of approximate solutions and well-posedness estimates for the actual solutions.
引用
收藏
页码:741 / 755
页数:14
相关论文
共 38 条
[1]  
Arnold V.(1966)Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications á l’hydrodynamique des fluides parfaits Ann. Inst. Fourier (Grenoble) 16 319-361
[2]  
Bressan A.(2007)Global conservative solutions of the Camassa–Holm equation Arch. Ration. Mech. Anal. 183 215-239
[3]  
Constantin A.(2007)Global dissipative solutions of the Camassa–Holm equation Anal. Appl. 5 1-27
[4]  
Bressan A.(1993)An integrable shallow water equation with peaked solitons Phys. Rev. Lett. 71 1661-1664
[5]  
Constantin A.(1998)Global existence and blow-up for a shallow water equation Ann. Scuola Norm. Sup. Pisa Cl. Sci. 26 303-328
[6]  
Camassa R.(1998)Wave breaking for nonlinear shallow water equations Acta. Math. 181 229-243
[7]  
Holm D.(1981)Symplectic structures, their Bäcklund transformation and hereditary symmetries Physica D 4 47-66
[8]  
Constantin A.(2009)Non-uniform dependence on initial data for the CH equation on the line Differ. Integral Equ. 22 201-224
[9]  
Escher J.(2010)Dependence for the periodic CH equation Commun. Partial Differ. Equ. 35 1145-1162
[10]  
Constantin A.(2009)Dissipative solutions of the Camassa–Holm equation Discrete Contin. Dyn. Syst. 24 1047-1112