Inferring neutral biodiversity parameters using environmental DNA data sets

被引:0
作者
Guilhem Sommeria-Klein
Lucie Zinger
Pierre Taberlet
Eric Coissac
Jérôme Chave
机构
[1] Université Toulouse 3 Paul Sabatier,
[2] CNRS,undefined
[3] UMR 5174 Laboratoire Evolution et Diversité Biologique,undefined
[4] Université Grenoble Alpes,undefined
[5] CNRS,undefined
[6] UMR 5553 Laboratoire d’Ecologie Alpine,undefined
来源
Scientific Reports | / 6卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The DNA present in the environment is a unique and increasingly exploited source of information for conducting fast and standardized biodiversity assessments for any type of organisms. The datasets resulting from these surveys are however rarely compared to the quantitative predictions of biodiversity models. In this study, we simulate neutral taxa-abundance datasets, and artificially noise them by simulating noise terms typical of DNA-based biodiversity surveys. The resulting noised taxa abundances are used to assess whether the two parameters of Hubbell’s neutral theory of biodiversity can still be estimated. We find that parameters can be inferred provided that PCR noise on taxa abundances does not exceed a certain threshold. However, inference is seriously biased by the presence of artifactual taxa. The uneven contribution of organisms to environmental DNA owing to size differences and barcode copy number variability does not impede neutral parameter inference, provided that the number of sequence reads used for inference is smaller than the number of effectively sampled individuals. Hence, estimating neutral parameters from DNA-based taxa abundance patterns is possible but requires some caution. In studies that include empirical noise assessments, our comprehensive simulation benchmark provides objective criteria to evaluate the robustness of neutral parameter inference.
引用
收藏
相关论文
共 50 条
[41]   Inferring population genetics parameters of evolving viruses using time-series data [J].
Zinger, Tal ;
Gelbart, Maoz ;
Miller, Danielle ;
Pennings, Pleuni S. ;
Stern, Adi .
VIRUS EVOLUTION, 2019, 5 (01)
[42]   Inferring technological parameters from incomplete panel data [J].
Dionne, G ;
Gagne, R ;
Vanasse, C .
JOURNAL OF ECONOMETRICS, 1998, 87 (02) :303-327
[43]   Inferring information flow in spike-train data sets using a trial-shuffle method [J].
Walker, Benjamin L. ;
Newhall, Katherine A. .
PLOS ONE, 2018, 13 (11)
[44]   Integrating Environmental DNA Results With Diverse Data Sets to Improve Biosurveillance of River Health [J].
Sepulveda, Adam J. ;
Hoegh, Andrew ;
Gage, Joshua A. ;
Caldwell Eldridge, Sara L. ;
Birch, James M. ;
Stratton, Christian ;
Hutchins, Patrick R. ;
Barnhart, Elliott P. .
FRONTIERS IN ECOLOGY AND EVOLUTION, 2021, 9
[45]   Sifting environmental DNA metabarcoding data sets for rapid reconstruction of marine food webs [J].
D'Alessandro, Simone ;
Mariani, Stefano .
FISH AND FISHERIES, 2021, 22 (04) :822-833
[46]   Automatic calibration of lithography simulation parameters using multiple data sets [J].
Byers, J ;
Mack, C ;
Huang, R ;
Jug, S .
MICROELECTRONIC ENGINEERING, 2002, 61-2 :89-95
[47]   An environmental domain classification of Canada using earth observation data for biodiversity assessment [J].
Coops, Nicholas C. ;
Wulder, Michael A. ;
Iwanicka, Donald .
ECOLOGICAL INFORMATICS, 2009, 4 (01) :8-22
[48]   An integrated spatio-temporal view of riverine biodiversity using environmental DNA metabarcoding [J].
Perry, William Bernard ;
Seymour, Mathew ;
Orsini, Luisa ;
Jams, Ifan Bryn ;
Milner, Nigel ;
Edwards, Francois ;
Harvey, Rachel ;
de Bruyn, Mark ;
Bista, Iliana ;
Walsh, Kerry ;
Emmett, Bridget ;
Blackman, Rosetta ;
Altermatt, Florian ;
Handley, Lori Lawson ;
Maechler, Elvira ;
Deiner, Kristy ;
Bik, Holly M. ;
Carvalho, Gary ;
Colbourne, John ;
Cosby, Bernard Jack ;
Durance, Isabelle ;
Creer, Simon .
NATURE COMMUNICATIONS, 2024, 15 (01)
[49]   Improving environmental and biodiversity monitoring in the Baltic Sea using DNA barcoding of Chironomidae (Diptera) [J].
Brodin, Y. ;
Ejdung, G. ;
Strandberg, J. ;
Lyrholm, T. .
MOLECULAR ECOLOGY RESOURCES, 2013, 13 (06) :996-1004
[50]   Using environmental (e)DNA sequencing for aquatic biodiversity surveys: a beginner's guide [J].
Shaw, Jennifer L. A. ;
Weyrich, Laura ;
Cooper, Alan .
MARINE AND FRESHWATER RESEARCH, 2017, 68 (01) :20-33