Inferring neutral biodiversity parameters using environmental DNA data sets

被引:0
作者
Guilhem Sommeria-Klein
Lucie Zinger
Pierre Taberlet
Eric Coissac
Jérôme Chave
机构
[1] Université Toulouse 3 Paul Sabatier,
[2] CNRS,undefined
[3] UMR 5174 Laboratoire Evolution et Diversité Biologique,undefined
[4] Université Grenoble Alpes,undefined
[5] CNRS,undefined
[6] UMR 5553 Laboratoire d’Ecologie Alpine,undefined
来源
Scientific Reports | / 6卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The DNA present in the environment is a unique and increasingly exploited source of information for conducting fast and standardized biodiversity assessments for any type of organisms. The datasets resulting from these surveys are however rarely compared to the quantitative predictions of biodiversity models. In this study, we simulate neutral taxa-abundance datasets, and artificially noise them by simulating noise terms typical of DNA-based biodiversity surveys. The resulting noised taxa abundances are used to assess whether the two parameters of Hubbell’s neutral theory of biodiversity can still be estimated. We find that parameters can be inferred provided that PCR noise on taxa abundances does not exceed a certain threshold. However, inference is seriously biased by the presence of artifactual taxa. The uneven contribution of organisms to environmental DNA owing to size differences and barcode copy number variability does not impede neutral parameter inference, provided that the number of sequence reads used for inference is smaller than the number of effectively sampled individuals. Hence, estimating neutral parameters from DNA-based taxa abundance patterns is possible but requires some caution. In studies that include empirical noise assessments, our comprehensive simulation benchmark provides objective criteria to evaluate the robustness of neutral parameter inference.
引用
收藏
相关论文
共 50 条
[31]   Testing multiple substrates for terrestrial biodiversity monitoring using environmental DNA metabarcoding [J].
van der Heyde, Mieke ;
Bunce, Michael ;
Wardell-Johnson, Grant ;
Fernandes, Kristen ;
White, Nicole E. ;
Nevill, Paul .
MOLECULAR ECOLOGY RESOURCES, 2020, 20 (03) :732-745
[32]   Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding [J].
Valentini, Alice ;
Taberlet, Pierre ;
Miaud, Claude ;
Civade, Raphael ;
Herder, Jelger ;
Thomsen, Philip Francis ;
Bellemain, Eva ;
Besnard, Aurelien ;
Coissac, Eric ;
Boyer, Frederic ;
Gaboriaud, Coline ;
Jean, Pauline ;
Poulet, Nicolas ;
Roset, Nicolas ;
Copp, Gordon H. ;
Geniez, Philippe ;
Pont, Didier ;
Argillier, Christine ;
Baudoin, Jean-Marc ;
Peroux, Tiphaine ;
Crivelli, Alain J. ;
Olivier, Anthony ;
Acqueberge, Manon ;
Le Brun, Matthieu ;
Moller, Peter R. ;
Willerslev, Eske ;
Dejean, Tony .
MOLECULAR ECOLOGY, 2016, 25 (04) :929-942
[33]   Assessment of fish biodiversity in four Korean rivers using environmental DNA metabarcoding [J].
Alam, Md Jobaidul ;
Kim, Nack-Keun ;
Andriyono, Sapto ;
Choi, Hee-kyu ;
Lee, Ji-Hyun ;
Kim, Hyun-Woo .
PEERJ, 2020, 8
[34]   Environmental DNA for wildlife biology and biodiversity monitoring [J].
Bohmann, Kristine ;
Evans, Alice ;
Gilbert, M. Thomas P. ;
Carvalho, Gary R. ;
Creer, Simon ;
Knapp, Michael ;
Yu, Douglas W. ;
de Bruyn, Mark .
TRENDS IN ECOLOGY & EVOLUTION, 2014, 29 (06) :358-367
[35]   Environmental DNA metabarcoding: an approach for biodiversity monitoring [J].
Padilla-Garcia, Cinthia Yedith ;
Camacho-Sanchez, Fatima Yedith ;
Reyes-Lopez, Miguel Angel .
CIENCIAUAT, 2021, 16 (01) :136-149
[36]   Application of Environmental DNA in the Air for Monitoring Biodiversity [J].
Liu, Qingyang .
SUSTAINABILITY, 2025, 17 (12)
[37]   Aquatic biodiversity on Reunion Island: responses of biological communities to environmental and anthropogenic pressures using environmental DNA [J].
Jannel, Lou-Anne ;
Valade, Pierre ;
Chabanet, Pascale ;
Jourand, Philippe .
AQUATIC ECOLOGY, 2025, 59 (01) :363-391
[38]   Biodiversity information retrieval across networked data sets [J].
Sarinder, K. K. S. ;
Lim, L. H. S. ;
Merican, A. F. ;
Dimyati, K. .
ASLIB PROCEEDINGS, 2010, 62 (4-5) :514-522
[39]   Inferring demographic parameters in bacterial genomic data using Bayesian and hybrid phylogenetic methods [J].
Sebastian Duchene ;
David A. Duchene ;
Jemma L. Geoghegan ;
Zoe A. Dyson ;
Jane Hawkey ;
Kathryn E. Holt .
BMC Evolutionary Biology, 18
[40]   Inferring demographic parameters in bacterial genomic data using Bayesian and hybrid phylogenetic methods [J].
Duchene, Sebastian ;
Duchene, David A. ;
Geoghegan, Jemma L. ;
Dyson, Zoe A. ;
Hawkey, Jane ;
Holt, Kathryn E. .
BMC EVOLUTIONARY BIOLOGY, 2018, 18