Inferring neutral biodiversity parameters using environmental DNA data sets

被引:0
|
作者
Guilhem Sommeria-Klein
Lucie Zinger
Pierre Taberlet
Eric Coissac
Jérôme Chave
机构
[1] Université Toulouse 3 Paul Sabatier,
[2] CNRS,undefined
[3] UMR 5174 Laboratoire Evolution et Diversité Biologique,undefined
[4] Université Grenoble Alpes,undefined
[5] CNRS,undefined
[6] UMR 5553 Laboratoire d’Ecologie Alpine,undefined
来源
Scientific Reports | / 6卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The DNA present in the environment is a unique and increasingly exploited source of information for conducting fast and standardized biodiversity assessments for any type of organisms. The datasets resulting from these surveys are however rarely compared to the quantitative predictions of biodiversity models. In this study, we simulate neutral taxa-abundance datasets, and artificially noise them by simulating noise terms typical of DNA-based biodiversity surveys. The resulting noised taxa abundances are used to assess whether the two parameters of Hubbell’s neutral theory of biodiversity can still be estimated. We find that parameters can be inferred provided that PCR noise on taxa abundances does not exceed a certain threshold. However, inference is seriously biased by the presence of artifactual taxa. The uneven contribution of organisms to environmental DNA owing to size differences and barcode copy number variability does not impede neutral parameter inference, provided that the number of sequence reads used for inference is smaller than the number of effectively sampled individuals. Hence, estimating neutral parameters from DNA-based taxa abundance patterns is possible but requires some caution. In studies that include empirical noise assessments, our comprehensive simulation benchmark provides objective criteria to evaluate the robustness of neutral parameter inference.
引用
收藏
相关论文
共 50 条
  • [1] Inferring neutral biodiversity parameters using environmental DNA data sets
    Sommeria-Klein, Guilhem
    Zinger, Lucie
    Taberlet, Pierre
    Coissac, Eric
    Chave, Jerome
    SCIENTIFIC REPORTS, 2016, 6
  • [2] Inferring the parameters of the neutral theory of biodiversity using phylogenetic information and implications for tropical forests
    Jabot, Franck
    Chave, Jerome
    ECOLOGY LETTERS, 2009, 12 (03) : 239 - 248
  • [3] Biodiversity monitoring using environmental DNA
    Rodriguez-Ezpeleta, Naiara
    Zinger, Lucie
    Kinziger, Andrew
    Bik, Holly M.
    Bonin, Aurelie
    Coissac, Eric
    Emerson, Brent C.
    Lopes, Carla Martins
    Pelletier, Tara A.
    Taberlet, Pierre
    Narum, Shawn
    MOLECULAR ECOLOGY RESOURCES, 2021, 21 (05) : 1405 - 1409
  • [4] Inferring complex phylogenies using parsimony: An empirical approach using three large DNA data sets for angiosperms
    Soltis, DE
    Soltis, PS
    Mort, ME
    Chase, MW
    Savolainen, V
    Hoot, SB
    Morton, CM
    SYSTEMATIC BIOLOGY, 1998, 47 (01) : 32 - 42
  • [5] Monitoring endangered freshwater biodiversity using environmental DNA
    Thomsen, Philip Francis
    Kielgast, Jos
    Iversen, Lars L.
    Wiuf, Carsten
    Rasmussen, Morten
    Gilbert, M. Thomas P.
    Orlando, Ludovic
    Willerslev, Eske
    MOLECULAR ECOLOGY, 2012, 21 (11) : 2565 - 2573
  • [6] Biodiversity and spatial distribution of ascidian using environmental DNA metabarcoding
    Bae, Seongjun
    Kim, Philjae
    Yi, Chang -Ho
    MARINE ENVIRONMENTAL RESEARCH, 2023, 185
  • [7] Evaluation of fish biodiversity in estuaries using environmental DNA metabarcoding
    Ahn, Hyojin
    Kume, Manabu
    Terashima, Yuki
    Ye, Feng
    Kameyama, Satoshi
    Miya, Masaki
    Yamashita, Yoh
    Kasai, Akihide
    PLOS ONE, 2020, 15 (10):
  • [8] Effects of soil preservation for biodiversity monitoring using environmental DNA
    Guerrieri, Alessia
    Bonin, Aurelie
    Munkemuller, Tamara
    Gielly, Ludovic
    Thuiller, Wilfried
    Francesco Ficetola, Gentile
    MOLECULAR ECOLOGY, 2021, 30 (13) : 3313 - 3325
  • [9] Inferring interactions in complex microbial communities from nucleotide sequence data and environmental parameters
    Shang, Yu
    Sikorski, Johannes
    Bonkowski, Michael
    Fiore-Donno, Anna-Maria
    Kandeler, Ellen
    Marhan, Sven
    Boeddinghaus, Runa S.
    Solly, Emily F.
    Schrumpf, Marion
    Schoening, Ingo
    Wubet, Tesfaye
    Buscot, Francois
    Overmann, Joerg
    PLOS ONE, 2017, 12 (03):
  • [10] Estimation of Parameters of Target Using RADAR Data Sets
    Raja, M.
    Chaturvedi, Sudhir Kumar
    Kamal, Hutanshu
    Thomas, Cris
    Kummamuri, Rahul
    INTELLIGENT COMMUNICATION, CONTROL AND DEVICES, ICICCD 2017, 2018, 624 : 799 - 804