MOFA+: a statistical framework for comprehensive integration of multi-modal single-cell data

被引:0
|
作者
Ricard Argelaguet
Damien Arnol
Danila Bredikhin
Yonatan Deloro
Britta Velten
John C. Marioni
Oliver Stegle
机构
[1] European Bioinformatics Institute (EMBL-EBI),
[2] European Molecular Biology Laboratory (EMBL),undefined
[3] Division of Computational Genomics and Systems Genetics,undefined
[4] German Cancer Research Center (DKFZ),undefined
[5] Cancer Research UK Cambridge Institute,undefined
[6] University of Cambridge,undefined
[7] Wellcome Sanger Institute,undefined
来源
Genome Biology | / 21卷
关键词
Single cell; Multi-omics; Data integration; Factor analysis;
D O I
暂无
中图分类号
学科分类号
摘要
Technological advances have enabled the profiling of multiple molecular layers at single-cell resolution, assaying cells from multiple samples or conditions. Consequently, there is a growing need for computational strategies to analyze data from complex experimental designs that include multiple data modalities and multiple groups of samples. We present Multi-Omics Factor Analysis v2 (MOFA+), a statistical framework for the comprehensive and scalable integration of single-cell multi-modal data. MOFA+ reconstructs a low-dimensional representation of the data using computationally efficient variational inference and supports flexible sparsity constraints, allowing to jointly model variation across multiple sample groups and data modalities.
引用
收藏
相关论文
共 50 条
  • [1] MOFA plus : a statistical framework for comprehensive integration of multi-modal single-cell data
    Argelaguet, Ricard
    Arnol, Damien
    Bredikhin, Danila
    Deloro, Yonatan
    Velten, Britta
    Marioni, John C.
    Stegle, Oliver
    GENOME BIOLOGY, 2020, 21 (01)
  • [2] Integration of multi-modal single-cell data
    Lee, Michelle Y. Y.
    Li, Mingyao
    NATURE BIOTECHNOLOGY, 2024, 42 (02) : 190 - 191
  • [3] Integration of multi-modal single-cell data
    Michelle Y. Y. Lee
    Mingyao Li
    Nature Biotechnology, 2024, 42 : 190 - 191
  • [4] SCREE: a comprehensive pipeline for single-cell multi-modal CRISPR screen data processing and analysis
    Wei, Hailin
    Han, Tong
    Li, Taiwen
    Wu, Qiu
    Wang, Chenfei
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (03)
  • [5] Comprehensive Integration of Single-Cell Data
    Stuart, Tim
    Butler, Andrew
    Hoffman, Paul
    Hafemeister, Christoph
    Papalexi, Efthymia
    Mauck, William M., III
    Hao, Yuhan
    Stoeckius, Marlon
    Smibert, Peter
    Satija, Rahul
    CELL, 2019, 177 (07) : 1888 - +
  • [6] M3S: a comprehensive model selection for multi-modal single-cell RNA sequencing data
    Yu Zhang
    Changlin Wan
    Pengcheng Wang
    Wennan Chang
    Yan Huo
    Jian Chen
    Qin Ma
    Sha Cao
    Chi Zhang
    BMC Bioinformatics, 20
  • [7] M3S: a comprehensive model selection for multi-modal single-cell RNA sequencing data
    Zhang, Yu
    Wan, Changlin
    Wang, Pengcheng
    Chang, Wennan
    Huo, Yan
    Chen, Jian
    Ma, Qin
    Cao, Sha
    Zhang, Chi
    BMC BIOINFORMATICS, 2019, 20 (01)
  • [8] Scalable and multi-modal single-cell spatial genomics
    Chen, Fei
    ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, 2023, 64 : 37 - 37
  • [9] Interpretable multi-modal data integration
    Osorio, Daniel
    NATURE COMPUTATIONAL SCIENCE, 2022, 2 (01): : 8 - 9
  • [10] Interpretable multi-modal data integration
    Daniel Osorio
    Nature Computational Science, 2022, 2 : 8 - 9