Cohomology of arithmetic groups and periods of automorphic forms

被引:0
作者
Akshay Venkatesh
机构
[1] Stanford University,Department of Mathematics
来源
Japanese Journal of Mathematics | 2017年 / 12卷
关键词
motivic cohomology; arithmetic groups; automorphic forms; 11F75; 19E15;
D O I
暂无
中图分类号
学科分类号
摘要
We recall some unusual features of the cohomology of arithmetic groups, and propose that they are explained by a hidden action of certain motivic cohomology groups.
引用
收藏
页码:1 / 32
页数:31
相关论文
共 21 条
  • [1] Arthur J.(1989)Unipotent automorphic representations: conjectures Orbites unipotentes et représentations. II, Astérisque 171-172 13-71
  • [2] Bloch S.(1986)Algebraic cycles and higher Adv. in Math. 61 267-304
  • [3] Borel A.(1974)-theory Ann. Sci. École Norm. Sup. (4), 7 235-272
  • [4] Cowling M.(1988)Stable real cohomology of arithmetic groups J. Reine Angew. Math., 387 97-110
  • [5] Haagerup U.(1994)Almost Math. Comp. 62 407-429
  • [6] Howe R.(1998) matrix coefficients Ann. Sci. École Norm. Sup. (4), 31 181-279
  • [7] Cremona J.E.(1998)Periods of cusp forms and elliptic curves over imaginary quadratic fields Invent. Math. 131 25-83
  • [8] Whitley E.(2008)Harmonic analysis in weighted J. Amer. Math. Soc., 21 283-304
  • [9] Franke J.(1992)-spaces Invent. Math. 107 447-452
  • [10] Goresky M.(1995)Equivariant cohomology, Koszul duality, and the localization theorem Bull. Amer. Math. Soc. (N.S.), 32 375-402