On Einstein extensions of nilpotent metric Lie algebras

被引:0
作者
Yu. G. Nikonorov
机构
[1] Rubtsovsk Industrial Institute,
关键词
Einstein metrics; Riemannian manifolds; nilpotent metric Lie algebras; solvmanifolds;
D O I
10.3103/S1055134407030017
中图分类号
学科分类号
摘要
The main result of the article is as follows: If a nilpotent noncommutative metric Lie algebra (n, Q) is such that the operator Id − trace(Ric) / trace(Ric2) Ric is positive definite then every Einstein solvable extension of (n, Q) is standard. We deduce several consequences of this assertion. In particular, we prove that all Einstein solvmanifolds of dimension at most 7 are standard.
引用
收藏
页码:153 / 170
页数:17
相关论文
共 21 条
[1]  
Alekseevskiĭ D. V.(1971)Conjugacy of polar factorizations of Lie groups Mat. Sb. (N. S.) 84 14-26
[2]  
Alekseevskiĭ D. V.(1975)Homogeneous Riemannian spaces of negative curvature Mat. Sb. (N. S.) 96 93-117
[3]  
Dotti M. I.(1982)Ricci curvature of left-invariant metrics on solvable unimodular Lie groups Math. Z. 180 257-263
[4]  
Gordon C. S.(2001)New homogeneous Einstein metrics of negative Ricci curvature Ann. Global Anal. Geom. 19 75-101
[5]  
Kerr M. M.(1998)Noncompact homogeneous Einstein spaces Invent. Math. 133 279-352
[6]  
Heber J.(1974)On homogeneous manifolds of negative curvature Math. Ann. 211 23-34
[7]  
Heintze E.(2001)Ricci soliton homogeneous nilmanifolds Math. Ann. 319 715-733
[8]  
Lauret J.(2001)Standard Einstein solvmanifolds as critical points Quart. J. Math. 52 463-470
[9]  
Lauret J.(2002)Finding Einstein solvmanifolds by a variational method Math. Z. 241 83-99
[10]  
Lauret J.(2001)On the real moment map Math. Res. Lett. 8 779-788