Hurwitz numbers and products of random matrices

被引:0
作者
A. Yu. Orlov
机构
[1] Institute of Oceanology,
[2] National Research University Higher School of Economics,undefined
来源
Theoretical and Mathematical Physics | 2017年 / 192卷
关键词
Hurwitz number; Klein surface; Schur polynomial; characters of a symmetric group; hypergeometric function; random partition; random matrix; matrix model; products of random matrices; tau function; two-component Kadomtsev–Petviashvili hierarchy; Toda lattice; B-type Kadomtsev–Petviashvili hierarchy (Kac–van de Leur);
D O I
暂无
中图分类号
学科分类号
摘要
We study multimatrix models, which may be viewed as integrals of products of tau functions depending on the eigenvalues of products of random matrices. We consider tau functions of the two-component Kadomtsev–Petviashvili (KP) hierarchy (semi-infinite relativistic Toda lattice) and of the B-type KP (BKP) hierarchy introduced by Kac and van de Leur. Such integrals are sometimes tau functions themselves. We consider models that generate Hurwitz numbers HE,F, where E is the Euler characteristic of the base surface and F is the number of branch points. We show that in the case where the integrands contain the product of n > 2 matrices, the integral generates Hurwitz numbers with E ≤ 2 and F ≤ n+2. Both the numbers E and F depend both on n and on the order of the factors in the matrix product. The Euler characteristic E can be either an even or an odd number, i.e., it can match both orientable and nonorientable (Klein) base surfaces depending on the presence of the tau function of the BKP hierarchy in the integrand. We study two cases, the products of complex and the products of unitary matrices.
引用
收藏
页码:1282 / 1323
页数:41
相关论文
共 115 条
[31]  
van de Leur J.(2006)Gromov–Witten theory, Hurwitz theory, and completed cycles Ann. Math. (2) 163 517-852
[32]  
Orlov A. Yu.(2011)Complete set of cut-and-join operators in the Hurwitz–Kontsevich theory Theor. Math. Phys. 166 1-284
[33]  
Shcherbin D. M.(1986)Number of nonequivalent coverings over a nonorientable compact surface Sib. Math. J. 27 99-811
[34]  
Harnad J.(1995)Enumeration of homomorphisms and surface-coverings Quart. J. Math. Oxford Ser. (2) 46 485-1042
[35]  
Orlov A. Yu.(2015)2D Toda Lett. Math. Phys. 105 827-1084
[36]  
van de Leur J. W.(2015)-functions as combinatorial generating functions Commun. Math. Phys. 338 267-5080
[37]  
Orlov A. Yu.(1987)Hypergeometric t -functions, Hurwitz numbers, and enumeration of paths Trans. Amer. Math. Soc. 301 781-84
[38]  
Alexandrov A.(2013)Special functions of matrix argument: I. Algebraic induction, zonal polynomials, and hypergeometric functions Canad. J. Math. 65 1020-108
[39]  
Mironov A.(2015)Monotone Hurwitz numbers in genus zero Lett. Math. Phys. 105 1057-47
[40]  
Morozov A.(1996)Virasoro constraints and topological recursion for Grothendieck’s dessin counting Internat. J. Modern. Phys. A 11 5031-320