Tensor product of left polaroid operators

被引:0
作者
Enrico Boasso
Bhagwati P. Duggal
机构
来源
Acta Scientiarum Mathematicarum | 2012年 / 78卷 / 1-2期
关键词
Banach space; left polaroid operator; finitely left polaroid operator; tensor product; left-right multiplication; generalized ; -Weyl’s theorem; 47A80; 47A53; 47A10;
D O I
10.1007/BF03651348
中图分类号
学科分类号
摘要
A Banach space operator T ∈ B(χ) is left polaroid if for each λ ∈ iso σa(T) there is an integer d(λ) such that asc(T - λ) = d(λ) < ∞ and (T - λ)d(λ)+1χ is closed; T is finitely left polaroid if asc(T - λ) < ∞, (T - λ)χ is closed and dim(T - λ)−1(0) < ∞ at each λ ∈ iso σa(T). The left polaroid property transfers from A and B to their tensor product A ⊗ B, hence also from A and B* to the left-right multiplication operator τAB, for Hilbert space operators; an additional condition is required for Banach space operators. The finitely left polaroid property transfers from A and B to their tensor product A⊗B if and only if 0 ∈ iso σa(A⊗B); a similar result holds for τAB for finitely left polaroid A and B*.
引用
收藏
页码:251 / 264
页数:13
相关论文
共 25 条
  • [1] Aiena P(2007)Quasi-Fredholm operators and localised SVEP Acta Sci. Math. (Szeged) 73 251-263
  • [2] Aiena P(2008)On Drazin invertibility Proc. Amer.Math. Soc. 136 2839-2848
  • [3] Biondi MT(2006)On the equivalence of Browder’s and generalized Browder’s theorem Glasg. Math. J. 48 179-185
  • [4] Carpintero C(2001)On semi B-Fredholm operators Glasg. Math. J. 43 457-465
  • [5] Amouch M(2010)Generalized Browder’s and Weyl’s theorems for left and right multiplication operators J. Math. Anal. Appl. 370 461-471
  • [6] Zguitti H(2010)On the Rend. Circ. Mat. Palermo 59 475-483
  • [7] Berkani M(2010)-Browder and Glasg. Math. J. 52 705-709
  • [8] Sarih M(2008)-Weyl spectra of tensor products Math. Proc. R. Ir. Acad. 108A 149-163
  • [9] Boasso E(1982)Weyl’s theorem, tensor products and multiplication operators II J. Math. Soc. Japan 34 317-337
  • [10] Duggal BP(2007)Polaroid operators and generalized Browder-Weyl theorems tensor products and multiplication operators J.Math.Anal.Appl.336 1124-1131